|
from pathlib import Path |
|
import cv2 |
|
import pytest |
|
import torch |
|
|
|
from iopaint.helper import encode_pil_to_base64 |
|
from iopaint.schema import LDMSampler, HDStrategy, InpaintRequest, SDSampler |
|
from PIL import Image |
|
|
|
current_dir = Path(__file__).parent.absolute().resolve() |
|
save_dir = current_dir / "result" |
|
save_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
|
|
def check_device(device: str) -> int: |
|
if device == "cuda" and not torch.cuda.is_available(): |
|
pytest.skip("CUDA is not available, skip test on cuda") |
|
if device == "mps" and not torch.backends.mps.is_available(): |
|
pytest.skip("mps is not available, skip test on mps") |
|
steps = 2 if device == "cpu" else 20 |
|
return steps |
|
|
|
|
|
def assert_equal( |
|
model, |
|
config: InpaintRequest, |
|
gt_name, |
|
fx: float = 1, |
|
fy: float = 1, |
|
img_p=current_dir / "image.png", |
|
mask_p=current_dir / "mask.png", |
|
): |
|
img, mask = get_data(fx=fx, fy=fy, img_p=img_p, mask_p=mask_p) |
|
print(f"Input image shape: {img.shape}") |
|
res = model(img, mask, config) |
|
ok = cv2.imwrite( |
|
str(save_dir / gt_name), |
|
res, |
|
[int(cv2.IMWRITE_JPEG_QUALITY), 100, int(cv2.IMWRITE_PNG_COMPRESSION), 0], |
|
) |
|
assert ok, save_dir / gt_name |
|
|
|
""" |
|
Note that JPEG is lossy compression, so even if it is the highest quality 100, |
|
when the saved images is reloaded, a difference occurs with the original pixel value. |
|
If you want to save the original images as it is, save it as PNG or BMP. |
|
""" |
|
|
|
|
|
|
|
|
|
def get_data( |
|
fx: float = 1, |
|
fy: float = 1.0, |
|
img_p=current_dir / "image.png", |
|
mask_p=current_dir / "mask.png", |
|
): |
|
img = cv2.imread(str(img_p)) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB) |
|
mask = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE) |
|
img = cv2.resize(img, None, fx=fx, fy=fy, interpolation=cv2.INTER_AREA) |
|
mask = cv2.resize(mask, None, fx=fx, fy=fy, interpolation=cv2.INTER_NEAREST) |
|
return img, mask |
|
|
|
|
|
def get_config(**kwargs): |
|
data = dict( |
|
sd_sampler=kwargs.get("sd_sampler", SDSampler.uni_pc), |
|
ldm_steps=1, |
|
ldm_sampler=LDMSampler.plms, |
|
hd_strategy=kwargs.get("strategy", HDStrategy.ORIGINAL), |
|
hd_strategy_crop_margin=32, |
|
hd_strategy_crop_trigger_size=200, |
|
hd_strategy_resize_limit=200, |
|
) |
|
data.update(**kwargs) |
|
return InpaintRequest(image="", mask="", **data) |
|
|