object-to-object-replace / iopaint /batch_processing.py
nikunjkdtechnoland
init commit some files
063372b
raw
history blame
4.14 kB
import json
from pathlib import Path
from typing import Dict, Optional
import cv2
import psutil
from PIL import Image
from loguru import logger
from rich.console import Console
from rich.progress import (
Progress,
SpinnerColumn,
TimeElapsedColumn,
MofNCompleteColumn,
TextColumn,
BarColumn,
TaskProgressColumn,
)
from iopaint.helper import pil_to_bytes
from iopaint.model.utils import torch_gc
from iopaint.model_manager import ModelManager
from iopaint.schema import InpaintRequest
def glob_images(path: Path) -> Dict[str, Path]:
# png/jpg/jpeg
if path.is_file():
return {path.stem: path}
elif path.is_dir():
res = {}
for it in path.glob("*.*"):
if it.suffix.lower() in [".png", ".jpg", ".jpeg"]:
res[it.stem] = it
return res
def batch_inpaint(
model: str,
device,
image: Path,
mask: Path,
output: Path,
config: Optional[Path] = None,
concat: bool = False,
):
if image.is_dir() and output.is_file():
logger.error(
f"invalid --output: when image is a directory, output should be a directory"
)
exit(-1)
output.mkdir(parents=True, exist_ok=True)
image_paths = glob_images(image)
mask_paths = glob_images(mask)
if len(image_paths) == 0:
logger.error(f"invalid --image: empty image folder")
exit(-1)
if len(mask_paths) == 0:
logger.error(f"invalid --mask: empty mask folder")
exit(-1)
if config is None:
inpaint_request = InpaintRequest()
logger.info(f"Using default config: {inpaint_request}")
else:
with open(config, "r", encoding="utf-8") as f:
inpaint_request = InpaintRequest(**json.load(f))
model_manager = ModelManager(name=model, device=device)
first_mask = list(mask_paths.values())[0]
console = Console()
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TaskProgressColumn(),
MofNCompleteColumn(),
TimeElapsedColumn(),
console=console,
transient=False,
) as progress:
task = progress.add_task("Batch processing...", total=len(image_paths))
for stem, image_p in image_paths.items():
if stem not in mask_paths and mask.is_dir():
progress.log(f"mask for {image_p} not found")
progress.update(task, advance=1)
continue
mask_p = mask_paths.get(stem, first_mask)
infos = Image.open(image_p).info
img = cv2.imread(str(image_p))
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
mask_img = cv2.imread(str(mask_p), cv2.IMREAD_GRAYSCALE)
if mask_img.shape[:2] != img.shape[:2]:
progress.log(
f"resize mask {mask_p.name} to image {image_p.name} size: {img.shape[:2]}"
)
mask_img = cv2.resize(
mask_img,
(img.shape[1], img.shape[0]),
interpolation=cv2.INTER_NEAREST,
)
mask_img[mask_img >= 127] = 255
mask_img[mask_img < 127] = 0
# bgr
inpaint_result = model_manager(img, mask_img, inpaint_request)
inpaint_result = cv2.cvtColor(inpaint_result, cv2.COLOR_BGR2RGB)
if concat:
mask_img = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2RGB)
inpaint_result = cv2.hconcat([img, mask_img, inpaint_result])
img_bytes = pil_to_bytes(Image.fromarray(inpaint_result), "png", 100, infos)
save_p = output / f"{stem}.png"
with open(save_p, "wb") as fw:
fw.write(img_bytes)
progress.update(task, advance=1)
torch_gc()
# pid = psutil.Process().pid
# memory_info = psutil.Process(pid).memory_info()
# memory_in_mb = memory_info.rss / (1024 * 1024)
# print(f"原图大小:{img.shape},当前进程的内存占用:{memory_in_mb}MB")