|
import os |
|
|
|
import PIL.Image |
|
import cv2 |
|
import torch |
|
from diffusers import AutoencoderKL |
|
from loguru import logger |
|
|
|
from iopaint.schema import InpaintRequest, ModelType |
|
|
|
from .base import DiffusionInpaintModel |
|
from .helper.cpu_text_encoder import CPUTextEncoderWrapper |
|
from .original_sd_configs import get_config_files |
|
from .utils import ( |
|
handle_from_pretrained_exceptions, |
|
get_torch_dtype, |
|
enable_low_mem, |
|
is_local_files_only, |
|
) |
|
|
|
|
|
class SDXL(DiffusionInpaintModel): |
|
name = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1" |
|
pad_mod = 8 |
|
min_size = 512 |
|
lcm_lora_id = "latent-consistency/lcm-lora-sdxl" |
|
model_id_or_path = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1" |
|
|
|
def init_model(self, device: torch.device, **kwargs): |
|
from diffusers.pipelines import StableDiffusionXLInpaintPipeline |
|
|
|
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) |
|
|
|
if self.model_info.model_type == ModelType.DIFFUSERS_SDXL: |
|
num_in_channels = 4 |
|
else: |
|
num_in_channels = 9 |
|
|
|
if os.path.isfile(self.model_id_or_path): |
|
self.model = StableDiffusionXLInpaintPipeline.from_single_file( |
|
self.model_id_or_path, |
|
torch_dtype=torch_dtype, |
|
num_in_channels=num_in_channels, |
|
load_safety_checker=False, |
|
config_files=get_config_files() |
|
) |
|
else: |
|
model_kwargs = { |
|
**kwargs.get("pipe_components", {}), |
|
"local_files_only": is_local_files_only(**kwargs), |
|
} |
|
if "vae" not in model_kwargs: |
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype |
|
) |
|
model_kwargs["vae"] = vae |
|
self.model = handle_from_pretrained_exceptions( |
|
StableDiffusionXLInpaintPipeline.from_pretrained, |
|
pretrained_model_name_or_path=self.model_id_or_path, |
|
torch_dtype=torch_dtype, |
|
variant="fp16", |
|
**model_kwargs |
|
) |
|
|
|
enable_low_mem(self.model, kwargs.get("low_mem", False)) |
|
|
|
if kwargs.get("cpu_offload", False) and use_gpu: |
|
logger.info("Enable sequential cpu offload") |
|
self.model.enable_sequential_cpu_offload(gpu_id=0) |
|
else: |
|
self.model = self.model.to(device) |
|
if kwargs["sd_cpu_textencoder"]: |
|
logger.info("Run Stable Diffusion TextEncoder on CPU") |
|
self.model.text_encoder = CPUTextEncoderWrapper( |
|
self.model.text_encoder, torch_dtype |
|
) |
|
self.model.text_encoder_2 = CPUTextEncoderWrapper( |
|
self.model.text_encoder_2, torch_dtype |
|
) |
|
|
|
self.callback = kwargs.pop("callback", None) |
|
|
|
def forward(self, image, mask, config: InpaintRequest): |
|
"""Input image and output image have same size |
|
image: [H, W, C] RGB |
|
mask: [H, W, 1] 255 means area to repaint |
|
return: BGR IMAGE |
|
""" |
|
self.set_scheduler(config) |
|
|
|
img_h, img_w = image.shape[:2] |
|
|
|
output = self.model( |
|
image=PIL.Image.fromarray(image), |
|
prompt=config.prompt, |
|
negative_prompt=config.negative_prompt, |
|
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), |
|
num_inference_steps=config.sd_steps, |
|
strength=0.999 if config.sd_strength == 1.0 else config.sd_strength, |
|
guidance_scale=config.sd_guidance_scale, |
|
output_type="np", |
|
callback_on_step_end=self.callback, |
|
height=img_h, |
|
width=img_w, |
|
generator=torch.manual_seed(config.sd_seed), |
|
).images[0] |
|
|
|
output = (output * 255).round().astype("uint8") |
|
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) |
|
return output |
|
|