|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.utils import spectral_norm as spectral_norm_fn |
|
from torch.nn.utils import weight_norm as weight_norm_fn |
|
from PIL import Image |
|
from torchvision import transforms |
|
from torchvision import utils as vutils |
|
|
|
from utils.tools import extract_image_patches, flow_to_image, \ |
|
reduce_mean, reduce_sum, default_loader, same_padding |
|
|
|
|
|
class Generator(nn.Module): |
|
def __init__(self, config, use_cuda, device_ids): |
|
super(Generator, self).__init__() |
|
self.input_dim = config['input_dim'] |
|
self.cnum = config['ngf'] |
|
self.use_cuda = use_cuda |
|
self.device_ids = device_ids |
|
|
|
self.coarse_generator = CoarseGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids) |
|
self.fine_generator = FineGenerator(self.input_dim, self.cnum, self.use_cuda, self.device_ids) |
|
|
|
def forward(self, x, mask): |
|
x_stage1 = self.coarse_generator(x, mask) |
|
x_stage2, offset_flow = self.fine_generator(x, x_stage1, mask) |
|
return x_stage1, x_stage2, offset_flow |
|
|
|
|
|
class CoarseGenerator(nn.Module): |
|
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None): |
|
super(CoarseGenerator, self).__init__() |
|
self.use_cuda = use_cuda |
|
self.device_ids = device_ids |
|
|
|
self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2) |
|
self.conv2_downsample = gen_conv(cnum, cnum*2, 3, 2, 1) |
|
self.conv3 = gen_conv(cnum*2, cnum*2, 3, 1, 1) |
|
self.conv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1) |
|
self.conv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
|
|
self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2) |
|
self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4) |
|
self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8) |
|
self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16) |
|
|
|
self.conv11 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
self.conv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
|
|
self.conv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1) |
|
self.conv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1) |
|
self.conv15 = gen_conv(cnum*2, cnum, 3, 1, 1) |
|
self.conv16 = gen_conv(cnum, cnum//2, 3, 1, 1) |
|
self.conv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none') |
|
|
|
def forward(self, x, mask): |
|
|
|
ones = torch.ones(x.size(0), 1, x.size(2), x.size(3)) |
|
if self.use_cuda: |
|
ones = ones.cuda() |
|
mask = mask.cuda() |
|
|
|
x = self.conv1(torch.cat([x, ones, mask], dim=1)) |
|
x = self.conv2_downsample(x) |
|
|
|
x = self.conv3(x) |
|
x = self.conv4_downsample(x) |
|
|
|
x = self.conv5(x) |
|
x = self.conv6(x) |
|
x = self.conv7_atrous(x) |
|
x = self.conv8_atrous(x) |
|
x = self.conv9_atrous(x) |
|
x = self.conv10_atrous(x) |
|
x = self.conv11(x) |
|
x = self.conv12(x) |
|
x = F.interpolate(x, scale_factor=2, mode='nearest') |
|
|
|
x = self.conv13(x) |
|
x = self.conv14(x) |
|
x = F.interpolate(x, scale_factor=2, mode='nearest') |
|
|
|
x = self.conv15(x) |
|
x = self.conv16(x) |
|
x = self.conv17(x) |
|
|
|
x_stage1 = torch.clamp(x, -1., 1.) |
|
|
|
return x_stage1 |
|
|
|
|
|
class FineGenerator(nn.Module): |
|
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None): |
|
super(FineGenerator, self).__init__() |
|
self.use_cuda = use_cuda |
|
self.device_ids = device_ids |
|
|
|
|
|
self.conv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2) |
|
self.conv2_downsample = gen_conv(cnum, cnum, 3, 2, 1) |
|
|
|
self.conv3 = gen_conv(cnum, cnum*2, 3, 1, 1) |
|
self.conv4_downsample = gen_conv(cnum*2, cnum*2, 3, 2, 1) |
|
|
|
self.conv5 = gen_conv(cnum*2, cnum*4, 3, 1, 1) |
|
self.conv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
|
|
self.conv7_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 2, rate=2) |
|
self.conv8_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 4, rate=4) |
|
self.conv9_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 8, rate=8) |
|
self.conv10_atrous = gen_conv(cnum*4, cnum*4, 3, 1, 16, rate=16) |
|
|
|
|
|
|
|
self.pmconv1 = gen_conv(input_dim + 2, cnum, 5, 1, 2) |
|
self.pmconv2_downsample = gen_conv(cnum, cnum, 3, 2, 1) |
|
|
|
self.pmconv3 = gen_conv(cnum, cnum*2, 3, 1, 1) |
|
self.pmconv4_downsample = gen_conv(cnum*2, cnum*4, 3, 2, 1) |
|
|
|
self.pmconv5 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
self.pmconv6 = gen_conv(cnum*4, cnum*4, 3, 1, 1, activation='relu') |
|
self.contextul_attention = ContextualAttention(ksize=3, stride=1, rate=2, fuse_k=3, softmax_scale=10, |
|
fuse=True, use_cuda=self.use_cuda, device_ids=self.device_ids) |
|
self.pmconv9 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
self.pmconv10 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
self.allconv11 = gen_conv(cnum*8, cnum*4, 3, 1, 1) |
|
self.allconv12 = gen_conv(cnum*4, cnum*4, 3, 1, 1) |
|
self.allconv13 = gen_conv(cnum*4, cnum*2, 3, 1, 1) |
|
self.allconv14 = gen_conv(cnum*2, cnum*2, 3, 1, 1) |
|
self.allconv15 = gen_conv(cnum*2, cnum, 3, 1, 1) |
|
self.allconv16 = gen_conv(cnum, cnum//2, 3, 1, 1) |
|
self.allconv17 = gen_conv(cnum//2, input_dim, 3, 1, 1, activation='none') |
|
|
|
def forward(self, xin, x_stage1, mask): |
|
x1_inpaint = x_stage1 * mask + xin * (1. - mask) |
|
|
|
ones = torch.ones(xin.size(0), 1, xin.size(2), xin.size(3)) |
|
if self.use_cuda: |
|
ones = ones.cuda() |
|
mask = mask.cuda() |
|
|
|
xnow = torch.cat([x1_inpaint, ones, mask], dim=1) |
|
x = self.conv1(xnow) |
|
x = self.conv2_downsample(x) |
|
x = self.conv3(x) |
|
x = self.conv4_downsample(x) |
|
x = self.conv5(x) |
|
x = self.conv6(x) |
|
x = self.conv7_atrous(x) |
|
x = self.conv8_atrous(x) |
|
x = self.conv9_atrous(x) |
|
x = self.conv10_atrous(x) |
|
x_hallu = x |
|
|
|
x = self.pmconv1(xnow) |
|
x = self.pmconv2_downsample(x) |
|
x = self.pmconv3(x) |
|
x = self.pmconv4_downsample(x) |
|
x = self.pmconv5(x) |
|
x = self.pmconv6(x) |
|
x, offset_flow = self.contextul_attention(x, x, mask) |
|
x = self.pmconv9(x) |
|
x = self.pmconv10(x) |
|
pm = x |
|
x = torch.cat([x_hallu, pm], dim=1) |
|
|
|
x = self.allconv11(x) |
|
x = self.allconv12(x) |
|
x = F.interpolate(x, scale_factor=2, mode='nearest') |
|
x = self.allconv13(x) |
|
x = self.allconv14(x) |
|
x = F.interpolate(x, scale_factor=2, mode='nearest') |
|
x = self.allconv15(x) |
|
x = self.allconv16(x) |
|
x = self.allconv17(x) |
|
x_stage2 = torch.clamp(x, -1., 1.) |
|
|
|
return x_stage2, offset_flow |
|
|
|
|
|
class ContextualAttention(nn.Module): |
|
def __init__(self, ksize=3, stride=1, rate=1, fuse_k=3, softmax_scale=10, |
|
fuse=False, use_cuda=False, device_ids=None): |
|
super(ContextualAttention, self).__init__() |
|
self.ksize = ksize |
|
self.stride = stride |
|
self.rate = rate |
|
self.fuse_k = fuse_k |
|
self.softmax_scale = softmax_scale |
|
self.fuse = fuse |
|
self.use_cuda = use_cuda |
|
self.device_ids = device_ids |
|
|
|
def forward(self, f, b, mask=None): |
|
""" Contextual attention layer implementation. |
|
Contextual attention is first introduced in publication: |
|
Generative Image Inpainting with Contextual Attention, Yu et al. |
|
Args: |
|
f: Input feature to match (foreground). |
|
b: Input feature for match (background). |
|
mask: Input mask for b, indicating patches not available. |
|
ksize: Kernel size for contextual attention. |
|
stride: Stride for extracting patches from b. |
|
rate: Dilation for matching. |
|
softmax_scale: Scaled softmax for attention. |
|
Returns: |
|
torch.tensor: output |
|
""" |
|
|
|
raw_int_fs = list(f.size()) |
|
raw_int_bs = list(b.size()) |
|
|
|
|
|
kernel = 2 * self.rate |
|
|
|
raw_w = extract_image_patches(b, ksizes=[kernel, kernel], |
|
strides=[self.rate*self.stride, |
|
self.rate*self.stride], |
|
rates=[1, 1], |
|
padding='same') |
|
|
|
raw_w = raw_w.view(raw_int_bs[0], raw_int_bs[1], kernel, kernel, -1) |
|
raw_w = raw_w.permute(0, 4, 1, 2, 3) |
|
raw_w_groups = torch.split(raw_w, 1, dim=0) |
|
|
|
|
|
|
|
f = F.interpolate(f, scale_factor=1./self.rate, mode='nearest') |
|
b = F.interpolate(b, scale_factor=1./self.rate, mode='nearest') |
|
int_fs = list(f.size()) |
|
int_bs = list(b.size()) |
|
f_groups = torch.split(f, 1, dim=0) |
|
|
|
w = extract_image_patches(b, ksizes=[self.ksize, self.ksize], |
|
strides=[self.stride, self.stride], |
|
rates=[1, 1], |
|
padding='same') |
|
|
|
w = w.view(int_bs[0], int_bs[1], self.ksize, self.ksize, -1) |
|
w = w.permute(0, 4, 1, 2, 3) |
|
w_groups = torch.split(w, 1, dim=0) |
|
|
|
|
|
if mask is None: |
|
mask = torch.zeros([int_bs[0], 1, int_bs[2], int_bs[3]]) |
|
if self.use_cuda: |
|
mask = mask.cuda() |
|
else: |
|
mask = F.interpolate(mask, scale_factor=1./(4*self.rate), mode='nearest') |
|
int_ms = list(mask.size()) |
|
|
|
m = extract_image_patches(mask, ksizes=[self.ksize, self.ksize], |
|
strides=[self.stride, self.stride], |
|
rates=[1, 1], |
|
padding='same') |
|
|
|
m = m.view(int_ms[0], int_ms[1], self.ksize, self.ksize, -1) |
|
m = m.permute(0, 4, 1, 2, 3) |
|
m = m[0] |
|
|
|
mm = (reduce_mean(m, axis=[1, 2, 3], keepdim=True)==0.).to(torch.float32) |
|
mm = mm.permute(1, 0, 2, 3) |
|
|
|
y = [] |
|
offsets = [] |
|
k = self.fuse_k |
|
scale = self.softmax_scale |
|
fuse_weight = torch.eye(k).view(1, 1, k, k) |
|
if self.use_cuda: |
|
fuse_weight = fuse_weight.cuda() |
|
|
|
for xi, wi, raw_wi in zip(f_groups, w_groups, raw_w_groups): |
|
''' |
|
O => output channel as a conv filter |
|
I => input channel as a conv filter |
|
xi : separated tensor along batch dimension of front; (B=1, C=128, H=32, W=32) |
|
wi : separated patch tensor along batch dimension of back; (B=1, O=32*32, I=128, KH=3, KW=3) |
|
raw_wi : separated tensor along batch dimension of back; (B=1, I=32*32, O=128, KH=4, KW=4) |
|
''' |
|
|
|
escape_NaN = torch.FloatTensor([1e-4]) |
|
if self.use_cuda: |
|
escape_NaN = escape_NaN.cuda() |
|
wi = wi[0] |
|
max_wi = torch.sqrt(reduce_sum(torch.pow(wi, 2) + escape_NaN, axis=[1, 2, 3], keepdim=True)) |
|
wi_normed = wi / max_wi |
|
|
|
xi = same_padding(xi, [self.ksize, self.ksize], [1, 1], [1, 1]) |
|
yi = F.conv2d(xi, wi_normed, stride=1) |
|
|
|
if self.fuse: |
|
|
|
yi = yi.view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3]) |
|
yi = same_padding(yi, [k, k], [1, 1], [1, 1]) |
|
yi = F.conv2d(yi, fuse_weight, stride=1) |
|
yi = yi.contiguous().view(1, int_bs[2], int_bs[3], int_fs[2], int_fs[3]) |
|
yi = yi.permute(0, 2, 1, 4, 3) |
|
yi = yi.contiguous().view(1, 1, int_bs[2]*int_bs[3], int_fs[2]*int_fs[3]) |
|
yi = same_padding(yi, [k, k], [1, 1], [1, 1]) |
|
yi = F.conv2d(yi, fuse_weight, stride=1) |
|
yi = yi.contiguous().view(1, int_bs[3], int_bs[2], int_fs[3], int_fs[2]) |
|
yi = yi.permute(0, 2, 1, 4, 3).contiguous() |
|
yi = yi.view(1, int_bs[2] * int_bs[3], int_fs[2], int_fs[3]) |
|
|
|
yi = yi * mm |
|
yi = F.softmax(yi*scale, dim=1) |
|
yi = yi * mm |
|
|
|
offset = torch.argmax(yi, dim=1, keepdim=True) |
|
|
|
if int_bs != int_fs: |
|
|
|
times = float(int_fs[2] * int_fs[3]) / float(int_bs[2] * int_bs[3]) |
|
offset = ((offset + 1).float() * times - 1).to(torch.int64) |
|
offset = torch.cat([offset//int_fs[3], offset%int_fs[3]], dim=1) |
|
|
|
|
|
wi_center = raw_wi[0] |
|
|
|
yi = F.conv_transpose2d(yi, wi_center, stride=self.rate, padding=1) / 4. |
|
y.append(yi) |
|
offsets.append(offset) |
|
|
|
y = torch.cat(y, dim=0) |
|
y.contiguous().view(raw_int_fs) |
|
|
|
offsets = torch.cat(offsets, dim=0) |
|
offsets = offsets.view(int_fs[0], 2, *int_fs[2:]) |
|
|
|
|
|
h_add = torch.arange(int_fs[2]).view([1, 1, int_fs[2], 1]).expand(int_fs[0], -1, -1, int_fs[3]) |
|
w_add = torch.arange(int_fs[3]).view([1, 1, 1, int_fs[3]]).expand(int_fs[0], -1, int_fs[2], -1) |
|
ref_coordinate = torch.cat([h_add, w_add], dim=1) |
|
if self.use_cuda: |
|
ref_coordinate = ref_coordinate.cuda() |
|
|
|
offsets = offsets - ref_coordinate |
|
|
|
|
|
flow = torch.from_numpy(flow_to_image(offsets.permute(0, 2, 3, 1).cpu().data.numpy())) / 255. |
|
flow = flow.permute(0, 3, 1, 2) |
|
if self.use_cuda: |
|
flow = flow.cuda() |
|
|
|
|
|
|
|
if self.rate != 1: |
|
flow = F.interpolate(flow, scale_factor=self.rate*4, mode='nearest') |
|
|
|
return y, flow |
|
|
|
|
|
def test_contextual_attention(args): |
|
import cv2 |
|
import os |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '2' |
|
|
|
def float_to_uint8(img): |
|
img = img * 255 |
|
return img.astype('uint8') |
|
|
|
rate = 2 |
|
stride = 1 |
|
grid = rate*stride |
|
|
|
b = default_loader(args.imageA) |
|
w, h = b.size |
|
b = b.resize((w//grid*grid//2, h//grid*grid//2), Image.ANTIALIAS) |
|
|
|
print('Size of imageA: {}'.format(b.size)) |
|
|
|
f = default_loader(args.imageB) |
|
w, h = f.size |
|
f = f.resize((w//grid*grid, h//grid*grid), Image.ANTIALIAS) |
|
print('Size of imageB: {}'.format(f.size)) |
|
|
|
f, b = transforms.ToTensor()(f), transforms.ToTensor()(b) |
|
f, b = f.unsqueeze(0), b.unsqueeze(0) |
|
if torch.cuda.is_available(): |
|
f, b = f.cuda(), b.cuda() |
|
|
|
contextual_attention = ContextualAttention(ksize=3, stride=stride, rate=rate, fuse=True) |
|
|
|
if torch.cuda.is_available(): |
|
contextual_attention = contextual_attention.cuda() |
|
|
|
yt, flow_t = contextual_attention(f, b) |
|
vutils.save_image(yt, 'vutils' + args.imageOut, normalize=True) |
|
vutils.save_image(flow_t, 'flow' + args.imageOut, normalize=True) |
|
|
|
|
|
|
|
|
|
|
|
class LocalDis(nn.Module): |
|
def __init__(self, config, use_cuda=True, device_ids=None): |
|
super(LocalDis, self).__init__() |
|
self.input_dim = config['input_dim'] |
|
self.cnum = config['ndf'] |
|
self.use_cuda = use_cuda |
|
self.device_ids = device_ids |
|
|
|
self.dis_conv_module = DisConvModule(self.input_dim, self.cnum) |
|
self.linear = nn.Linear(self.cnum*4*8*8, 1) |
|
|
|
def forward(self, x): |
|
x = self.dis_conv_module(x) |
|
x = x.view(x.size()[0], -1) |
|
x = self.linear(x) |
|
|
|
return x |
|
|
|
|
|
class GlobalDis(nn.Module): |
|
def __init__(self, config, use_cuda=True, device_ids=None): |
|
super(GlobalDis, self).__init__() |
|
self.input_dim = config['input_dim'] |
|
self.cnum = config['ndf'] |
|
self.use_cuda = use_cuda |
|
self.device_ids = device_ids |
|
|
|
self.dis_conv_module = DisConvModule(self.input_dim, self.cnum) |
|
self.linear = nn.Linear(self.cnum*4*16*16, 1) |
|
|
|
def forward(self, x): |
|
x = self.dis_conv_module(x) |
|
x = x.view(x.size()[0], -1) |
|
x = self.linear(x) |
|
|
|
return x |
|
|
|
|
|
class DisConvModule(nn.Module): |
|
def __init__(self, input_dim, cnum, use_cuda=True, device_ids=None): |
|
super(DisConvModule, self).__init__() |
|
self.use_cuda = use_cuda |
|
self.device_ids = device_ids |
|
|
|
self.conv1 = dis_conv(input_dim, cnum, 5, 2, 2) |
|
self.conv2 = dis_conv(cnum, cnum*2, 5, 2, 2) |
|
self.conv3 = dis_conv(cnum*2, cnum*4, 5, 2, 2) |
|
self.conv4 = dis_conv(cnum*4, cnum*4, 5, 2, 2) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
x = self.conv3(x) |
|
x = self.conv4(x) |
|
|
|
return x |
|
|
|
|
|
def gen_conv(input_dim, output_dim, kernel_size=3, stride=1, padding=0, rate=1, |
|
activation='elu'): |
|
return Conv2dBlock(input_dim, output_dim, kernel_size, stride, |
|
conv_padding=padding, dilation=rate, |
|
activation=activation) |
|
|
|
|
|
def dis_conv(input_dim, output_dim, kernel_size=5, stride=2, padding=0, rate=1, |
|
activation='lrelu'): |
|
return Conv2dBlock(input_dim, output_dim, kernel_size, stride, |
|
conv_padding=padding, dilation=rate, |
|
activation=activation) |
|
|
|
|
|
class Conv2dBlock(nn.Module): |
|
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=0, |
|
conv_padding=0, dilation=1, weight_norm='none', norm='none', |
|
activation='relu', pad_type='zero', transpose=False): |
|
super(Conv2dBlock, self).__init__() |
|
self.use_bias = True |
|
|
|
if pad_type == 'reflect': |
|
self.pad = nn.ReflectionPad2d(padding) |
|
elif pad_type == 'replicate': |
|
self.pad = nn.ReplicationPad2d(padding) |
|
elif pad_type == 'zero': |
|
self.pad = nn.ZeroPad2d(padding) |
|
elif pad_type == 'none': |
|
self.pad = None |
|
else: |
|
assert 0, "Unsupported padding type: {}".format(pad_type) |
|
|
|
|
|
norm_dim = output_dim |
|
if norm == 'bn': |
|
self.norm = nn.BatchNorm2d(norm_dim) |
|
elif norm == 'in': |
|
self.norm = nn.InstanceNorm2d(norm_dim) |
|
elif norm == 'none': |
|
self.norm = None |
|
else: |
|
assert 0, "Unsupported normalization: {}".format(norm) |
|
|
|
if weight_norm == 'sn': |
|
self.weight_norm = spectral_norm_fn |
|
elif weight_norm == 'wn': |
|
self.weight_norm = weight_norm_fn |
|
elif weight_norm == 'none': |
|
self.weight_norm = None |
|
else: |
|
assert 0, "Unsupported normalization: {}".format(weight_norm) |
|
|
|
|
|
if activation == 'relu': |
|
self.activation = nn.ReLU(inplace=True) |
|
elif activation == 'elu': |
|
self.activation = nn.ELU(inplace=True) |
|
elif activation == 'lrelu': |
|
self.activation = nn.LeakyReLU(0.2, inplace=True) |
|
elif activation == 'prelu': |
|
self.activation = nn.PReLU() |
|
elif activation == 'selu': |
|
self.activation = nn.SELU(inplace=True) |
|
elif activation == 'tanh': |
|
self.activation = nn.Tanh() |
|
elif activation == 'none': |
|
self.activation = None |
|
else: |
|
assert 0, "Unsupported activation: {}".format(activation) |
|
|
|
|
|
if transpose: |
|
self.conv = nn.ConvTranspose2d(input_dim, output_dim, |
|
kernel_size, stride, |
|
padding=conv_padding, |
|
output_padding=conv_padding, |
|
dilation=dilation, |
|
bias=self.use_bias) |
|
else: |
|
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, |
|
padding=conv_padding, dilation=dilation, |
|
bias=self.use_bias) |
|
|
|
if self.weight_norm: |
|
self.conv = self.weight_norm(self.conv) |
|
|
|
def forward(self, x): |
|
if self.pad: |
|
x = self.conv(self.pad(x)) |
|
else: |
|
x = self.conv(x) |
|
if self.norm: |
|
x = self.norm(x) |
|
if self.activation: |
|
x = self.activation(x) |
|
return x |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--imageA', default='', type=str, help='Image A as background patches to reconstruct image B.') |
|
parser.add_argument('--imageB', default='', type=str, help='Image B is reconstructed with image A.') |
|
parser.add_argument('--imageOut', default='result.png', type=str, help='Image B is reconstructed with image A.') |
|
args = parser.parse_args() |
|
test_contextual_attention(args) |
|
|