Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms.functional import normalize | |
from bgremove.bg_remove_cnn import BriaRMBG | |
from PIL import Image | |
net = BriaRMBG() | |
model_path = "./pretrained-model/bgremove.pth" | |
if torch.cuda.is_available(): | |
net.load_state_dict(torch.load(model_path)) | |
net = net.cuda() | |
else: | |
net.load_state_dict(torch.load(model_path, map_location="cpu")) | |
net.eval() | |
def resize_image(image): | |
image = image.convert('RGB') | |
model_input_size = (1024, 1024) | |
image = image.resize(model_input_size, Image.BILINEAR) | |
return image | |
def process(image): | |
# prepare input | |
orig_image = Image.fromarray(image) | |
w, h = orig_im_size = orig_image.size | |
image = resize_image(orig_image) | |
im_np = np.array(image) | |
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = torch.unsqueeze(im_tensor, 0) | |
im_tensor = torch.divide(im_tensor, 255.0) | |
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) | |
if torch.cuda.is_available(): | |
im_tensor = im_tensor.cuda() | |
# inference | |
result = net(im_tensor) | |
# post process | |
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
# image to pil | |
im_array = (result * 255).cpu().data.numpy().astype(np.uint8) | |
pil_im = Image.fromarray(np.squeeze(im_array)) | |
# paste the mask on the original image | |
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) | |
new_im.paste(orig_image, mask=pil_im) | |
# new_orig_image = orig_image.convert('RGBA') | |
return new_im | |