Spaces:
Runtime error
Runtime error
import gc | |
import math | |
import random | |
import traceback | |
from typing import Any | |
import torch | |
import numpy as np | |
import collections | |
from itertools import repeat | |
from diffusers import ( | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
UniPCMultistepScheduler, | |
LCMScheduler, | |
DPMSolverSinglestepScheduler, | |
KDPM2DiscreteScheduler, | |
KDPM2AncestralDiscreteScheduler, | |
HeunDiscreteScheduler, | |
) | |
from loguru import logger | |
from iopaint.schema import SDSampler | |
from torch import conv2d, conv_transpose2d | |
def make_beta_schedule( | |
device, schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3 | |
): | |
if schedule == "linear": | |
betas = ( | |
torch.linspace( | |
linear_start**0.5, linear_end**0.5, n_timestep, dtype=torch.float64 | |
) | |
** 2 | |
) | |
elif schedule == "cosine": | |
timesteps = ( | |
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s | |
).to(device) | |
alphas = timesteps / (1 + cosine_s) * np.pi / 2 | |
alphas = torch.cos(alphas).pow(2).to(device) | |
alphas = alphas / alphas[0] | |
betas = 1 - alphas[1:] / alphas[:-1] | |
betas = np.clip(betas, a_min=0, a_max=0.999) | |
elif schedule == "sqrt_linear": | |
betas = torch.linspace( | |
linear_start, linear_end, n_timestep, dtype=torch.float64 | |
) | |
elif schedule == "sqrt": | |
betas = ( | |
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) | |
** 0.5 | |
) | |
else: | |
raise ValueError(f"schedule '{schedule}' unknown.") | |
return betas.numpy() | |
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): | |
# select alphas for computing the variance schedule | |
alphas = alphacums[ddim_timesteps] | |
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) | |
# according the the formula provided in https://arxiv.org/abs/2010.02502 | |
sigmas = eta * np.sqrt( | |
(1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev) | |
) | |
if verbose: | |
print( | |
f"Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}" | |
) | |
print( | |
f"For the chosen value of eta, which is {eta}, " | |
f"this results in the following sigma_t schedule for ddim sampler {sigmas}" | |
) | |
return sigmas, alphas, alphas_prev | |
def make_ddim_timesteps( | |
ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True | |
): | |
if ddim_discr_method == "uniform": | |
c = num_ddpm_timesteps // num_ddim_timesteps | |
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) | |
elif ddim_discr_method == "quad": | |
ddim_timesteps = ( | |
(np.linspace(0, np.sqrt(num_ddpm_timesteps * 0.8), num_ddim_timesteps)) ** 2 | |
).astype(int) | |
else: | |
raise NotImplementedError( | |
f'There is no ddim discretization method called "{ddim_discr_method}"' | |
) | |
# assert ddim_timesteps.shape[0] == num_ddim_timesteps | |
# add one to get the final alpha values right (the ones from first scale to data during sampling) | |
steps_out = ddim_timesteps + 1 | |
if verbose: | |
print(f"Selected timesteps for ddim sampler: {steps_out}") | |
return steps_out | |
def noise_like(shape, device, repeat=False): | |
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat( | |
shape[0], *((1,) * (len(shape) - 1)) | |
) | |
noise = lambda: torch.randn(shape, device=device) | |
return repeat_noise() if repeat else noise() | |
def timestep_embedding(device, timesteps, dim, max_period=10000, repeat_only=False): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
###### MAT and FcF ####### | |
def normalize_2nd_moment(x, dim=1): | |
return ( | |
x * (x.square().mean(dim=dim, keepdim=True) + torch.finfo(x.dtype).eps).rsqrt() | |
) | |
class EasyDict(dict): | |
"""Convenience class that behaves like a dict but allows access with the attribute syntax.""" | |
def __getattr__(self, name: str) -> Any: | |
try: | |
return self[name] | |
except KeyError: | |
raise AttributeError(name) | |
def __setattr__(self, name: str, value: Any) -> None: | |
self[name] = value | |
def __delattr__(self, name: str) -> None: | |
del self[name] | |
def _bias_act_ref(x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None): | |
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops.""" | |
assert isinstance(x, torch.Tensor) | |
assert clamp is None or clamp >= 0 | |
spec = activation_funcs[act] | |
alpha = float(alpha if alpha is not None else spec.def_alpha) | |
gain = float(gain if gain is not None else spec.def_gain) | |
clamp = float(clamp if clamp is not None else -1) | |
# Add bias. | |
if b is not None: | |
assert isinstance(b, torch.Tensor) and b.ndim == 1 | |
assert 0 <= dim < x.ndim | |
assert b.shape[0] == x.shape[dim] | |
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)]) | |
# Evaluate activation function. | |
alpha = float(alpha) | |
x = spec.func(x, alpha=alpha) | |
# Scale by gain. | |
gain = float(gain) | |
if gain != 1: | |
x = x * gain | |
# Clamp. | |
if clamp >= 0: | |
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type | |
return x | |
def bias_act( | |
x, b=None, dim=1, act="linear", alpha=None, gain=None, clamp=None, impl="ref" | |
): | |
r"""Fused bias and activation function. | |
Adds bias `b` to activation tensor `x`, evaluates activation function `act`, | |
and scales the result by `gain`. Each of the steps is optional. In most cases, | |
the fused op is considerably more efficient than performing the same calculation | |
using standard PyTorch ops. It supports first and second order gradients, | |
but not third order gradients. | |
Args: | |
x: Input activation tensor. Can be of any shape. | |
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type | |
as `x`. The shape must be known, and it must match the dimension of `x` | |
corresponding to `dim`. | |
dim: The dimension in `x` corresponding to the elements of `b`. | |
The value of `dim` is ignored if `b` is not specified. | |
act: Name of the activation function to evaluate, or `"linear"` to disable. | |
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc. | |
See `activation_funcs` for a full list. `None` is not allowed. | |
alpha: Shape parameter for the activation function, or `None` to use the default. | |
gain: Scaling factor for the output tensor, or `None` to use default. | |
See `activation_funcs` for the default scaling of each activation function. | |
If unsure, consider specifying 1. | |
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable | |
the clamping (default). | |
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default). | |
Returns: | |
Tensor of the same shape and datatype as `x`. | |
""" | |
assert isinstance(x, torch.Tensor) | |
assert impl in ["ref", "cuda"] | |
return _bias_act_ref( | |
x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp | |
) | |
def _get_filter_size(f): | |
if f is None: | |
return 1, 1 | |
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] | |
fw = f.shape[-1] | |
fh = f.shape[0] | |
fw = int(fw) | |
fh = int(fh) | |
assert fw >= 1 and fh >= 1 | |
return fw, fh | |
def _get_weight_shape(w): | |
shape = [int(sz) for sz in w.shape] | |
return shape | |
def _parse_scaling(scaling): | |
if isinstance(scaling, int): | |
scaling = [scaling, scaling] | |
assert isinstance(scaling, (list, tuple)) | |
assert all(isinstance(x, int) for x in scaling) | |
sx, sy = scaling | |
assert sx >= 1 and sy >= 1 | |
return sx, sy | |
def _parse_padding(padding): | |
if isinstance(padding, int): | |
padding = [padding, padding] | |
assert isinstance(padding, (list, tuple)) | |
assert all(isinstance(x, int) for x in padding) | |
if len(padding) == 2: | |
padx, pady = padding | |
padding = [padx, padx, pady, pady] | |
padx0, padx1, pady0, pady1 = padding | |
return padx0, padx1, pady0, pady1 | |
def setup_filter( | |
f, | |
device=torch.device("cpu"), | |
normalize=True, | |
flip_filter=False, | |
gain=1, | |
separable=None, | |
): | |
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`. | |
Args: | |
f: Torch tensor, numpy array, or python list of the shape | |
`[filter_height, filter_width]` (non-separable), | |
`[filter_taps]` (separable), | |
`[]` (impulse), or | |
`None` (identity). | |
device: Result device (default: cpu). | |
normalize: Normalize the filter so that it retains the magnitude | |
for constant input signal (DC)? (default: True). | |
flip_filter: Flip the filter? (default: False). | |
gain: Overall scaling factor for signal magnitude (default: 1). | |
separable: Return a separable filter? (default: select automatically). | |
Returns: | |
Float32 tensor of the shape | |
`[filter_height, filter_width]` (non-separable) or | |
`[filter_taps]` (separable). | |
""" | |
# Validate. | |
if f is None: | |
f = 1 | |
f = torch.as_tensor(f, dtype=torch.float32) | |
assert f.ndim in [0, 1, 2] | |
assert f.numel() > 0 | |
if f.ndim == 0: | |
f = f[np.newaxis] | |
# Separable? | |
if separable is None: | |
separable = f.ndim == 1 and f.numel() >= 8 | |
if f.ndim == 1 and not separable: | |
f = f.ger(f) | |
assert f.ndim == (1 if separable else 2) | |
# Apply normalize, flip, gain, and device. | |
if normalize: | |
f /= f.sum() | |
if flip_filter: | |
f = f.flip(list(range(f.ndim))) | |
f = f * (gain ** (f.ndim / 2)) | |
f = f.to(device=device) | |
return f | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return tuple(repeat(x, n)) | |
return parse | |
to_2tuple = _ntuple(2) | |
activation_funcs = { | |
"linear": EasyDict( | |
func=lambda x, **_: x, | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=1, | |
ref="", | |
has_2nd_grad=False, | |
), | |
"relu": EasyDict( | |
func=lambda x, **_: torch.nn.functional.relu(x), | |
def_alpha=0, | |
def_gain=np.sqrt(2), | |
cuda_idx=2, | |
ref="y", | |
has_2nd_grad=False, | |
), | |
"lrelu": EasyDict( | |
func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), | |
def_alpha=0.2, | |
def_gain=np.sqrt(2), | |
cuda_idx=3, | |
ref="y", | |
has_2nd_grad=False, | |
), | |
"tanh": EasyDict( | |
func=lambda x, **_: torch.tanh(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=4, | |
ref="y", | |
has_2nd_grad=True, | |
), | |
"sigmoid": EasyDict( | |
func=lambda x, **_: torch.sigmoid(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=5, | |
ref="y", | |
has_2nd_grad=True, | |
), | |
"elu": EasyDict( | |
func=lambda x, **_: torch.nn.functional.elu(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=6, | |
ref="y", | |
has_2nd_grad=True, | |
), | |
"selu": EasyDict( | |
func=lambda x, **_: torch.nn.functional.selu(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=7, | |
ref="y", | |
has_2nd_grad=True, | |
), | |
"softplus": EasyDict( | |
func=lambda x, **_: torch.nn.functional.softplus(x), | |
def_alpha=0, | |
def_gain=1, | |
cuda_idx=8, | |
ref="y", | |
has_2nd_grad=True, | |
), | |
"swish": EasyDict( | |
func=lambda x, **_: torch.sigmoid(x) * x, | |
def_alpha=0, | |
def_gain=np.sqrt(2), | |
cuda_idx=9, | |
ref="x", | |
has_2nd_grad=True, | |
), | |
} | |
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl="cuda"): | |
r"""Pad, upsample, filter, and downsample a batch of 2D images. | |
Performs the following sequence of operations for each channel: | |
1. Upsample the image by inserting N-1 zeros after each pixel (`up`). | |
2. Pad the image with the specified number of zeros on each side (`padding`). | |
Negative padding corresponds to cropping the image. | |
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it | |
so that the footprint of all output pixels lies within the input image. | |
4. Downsample the image by keeping every Nth pixel (`down`). | |
This sequence of operations bears close resemblance to scipy.signal.upfirdn(). | |
The fused op is considerably more efficient than performing the same calculation | |
using standard PyTorch ops. It supports gradients of arbitrary order. | |
Args: | |
x: Float32/float64/float16 input tensor of the shape | |
`[batch_size, num_channels, in_height, in_width]`. | |
f: Float32 FIR filter of the shape | |
`[filter_height, filter_width]` (non-separable), | |
`[filter_taps]` (separable), or | |
`None` (identity). | |
up: Integer upsampling factor. Can be a single int or a list/tuple | |
`[x, y]` (default: 1). | |
down: Integer downsampling factor. Can be a single int or a list/tuple | |
`[x, y]` (default: 1). | |
padding: Padding with respect to the upsampled image. Can be a single number | |
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` | |
(default: 0). | |
flip_filter: False = convolution, True = correlation (default: False). | |
gain: Overall scaling factor for signal magnitude (default: 1). | |
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). | |
Returns: | |
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. | |
""" | |
# assert isinstance(x, torch.Tensor) | |
# assert impl in ['ref', 'cuda'] | |
return _upfirdn2d_ref( | |
x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain | |
) | |
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1): | |
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.""" | |
# Validate arguments. | |
assert isinstance(x, torch.Tensor) and x.ndim == 4 | |
if f is None: | |
f = torch.ones([1, 1], dtype=torch.float32, device=x.device) | |
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2] | |
assert not f.requires_grad | |
batch_size, num_channels, in_height, in_width = x.shape | |
# upx, upy = _parse_scaling(up) | |
# downx, downy = _parse_scaling(down) | |
upx, upy = up, up | |
downx, downy = down, down | |
# padx0, padx1, pady0, pady1 = _parse_padding(padding) | |
padx0, padx1, pady0, pady1 = padding[0], padding[1], padding[2], padding[3] | |
# Upsample by inserting zeros. | |
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1]) | |
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1]) | |
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx]) | |
# Pad or crop. | |
x = torch.nn.functional.pad( | |
x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)] | |
) | |
x = x[ | |
:, | |
:, | |
max(-pady0, 0) : x.shape[2] - max(-pady1, 0), | |
max(-padx0, 0) : x.shape[3] - max(-padx1, 0), | |
] | |
# Setup filter. | |
f = f * (gain ** (f.ndim / 2)) | |
f = f.to(x.dtype) | |
if not flip_filter: | |
f = f.flip(list(range(f.ndim))) | |
# Convolve with the filter. | |
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim) | |
if f.ndim == 4: | |
x = conv2d(input=x, weight=f, groups=num_channels) | |
else: | |
x = conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels) | |
x = conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels) | |
# Downsample by throwing away pixels. | |
x = x[:, :, ::downy, ::downx] | |
return x | |
def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl="cuda"): | |
r"""Downsample a batch of 2D images using the given 2D FIR filter. | |
By default, the result is padded so that its shape is a fraction of the input. | |
User-specified padding is applied on top of that, with negative values | |
indicating cropping. Pixels outside the image are assumed to be zero. | |
Args: | |
x: Float32/float64/float16 input tensor of the shape | |
`[batch_size, num_channels, in_height, in_width]`. | |
f: Float32 FIR filter of the shape | |
`[filter_height, filter_width]` (non-separable), | |
`[filter_taps]` (separable), or | |
`None` (identity). | |
down: Integer downsampling factor. Can be a single int or a list/tuple | |
`[x, y]` (default: 1). | |
padding: Padding with respect to the input. Can be a single number or a | |
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` | |
(default: 0). | |
flip_filter: False = convolution, True = correlation (default: False). | |
gain: Overall scaling factor for signal magnitude (default: 1). | |
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). | |
Returns: | |
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. | |
""" | |
downx, downy = _parse_scaling(down) | |
# padx0, padx1, pady0, pady1 = _parse_padding(padding) | |
padx0, padx1, pady0, pady1 = padding, padding, padding, padding | |
fw, fh = _get_filter_size(f) | |
p = [ | |
padx0 + (fw - downx + 1) // 2, | |
padx1 + (fw - downx) // 2, | |
pady0 + (fh - downy + 1) // 2, | |
pady1 + (fh - downy) // 2, | |
] | |
return upfirdn2d( | |
x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl | |
) | |
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl="cuda"): | |
r"""Upsample a batch of 2D images using the given 2D FIR filter. | |
By default, the result is padded so that its shape is a multiple of the input. | |
User-specified padding is applied on top of that, with negative values | |
indicating cropping. Pixels outside the image are assumed to be zero. | |
Args: | |
x: Float32/float64/float16 input tensor of the shape | |
`[batch_size, num_channels, in_height, in_width]`. | |
f: Float32 FIR filter of the shape | |
`[filter_height, filter_width]` (non-separable), | |
`[filter_taps]` (separable), or | |
`None` (identity). | |
up: Integer upsampling factor. Can be a single int or a list/tuple | |
`[x, y]` (default: 1). | |
padding: Padding with respect to the output. Can be a single number or a | |
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` | |
(default: 0). | |
flip_filter: False = convolution, True = correlation (default: False). | |
gain: Overall scaling factor for signal magnitude (default: 1). | |
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`). | |
Returns: | |
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. | |
""" | |
upx, upy = _parse_scaling(up) | |
# upx, upy = up, up | |
padx0, padx1, pady0, pady1 = _parse_padding(padding) | |
# padx0, padx1, pady0, pady1 = padding, padding, padding, padding | |
fw, fh = _get_filter_size(f) | |
p = [ | |
padx0 + (fw + upx - 1) // 2, | |
padx1 + (fw - upx) // 2, | |
pady0 + (fh + upy - 1) // 2, | |
pady1 + (fh - upy) // 2, | |
] | |
return upfirdn2d( | |
x, | |
f, | |
up=up, | |
padding=p, | |
flip_filter=flip_filter, | |
gain=gain * upx * upy, | |
impl=impl, | |
) | |
class MinibatchStdLayer(torch.nn.Module): | |
def __init__(self, group_size, num_channels=1): | |
super().__init__() | |
self.group_size = group_size | |
self.num_channels = num_channels | |
def forward(self, x): | |
N, C, H, W = x.shape | |
G = ( | |
torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) | |
if self.group_size is not None | |
else N | |
) | |
F = self.num_channels | |
c = C // F | |
y = x.reshape( | |
G, -1, F, c, H, W | |
) # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c. | |
y = y - y.mean(dim=0) # [GnFcHW] Subtract mean over group. | |
y = y.square().mean(dim=0) # [nFcHW] Calc variance over group. | |
y = (y + 1e-8).sqrt() # [nFcHW] Calc stddev over group. | |
y = y.mean(dim=[2, 3, 4]) # [nF] Take average over channels and pixels. | |
y = y.reshape(-1, F, 1, 1) # [nF11] Add missing dimensions. | |
y = y.repeat(G, 1, H, W) # [NFHW] Replicate over group and pixels. | |
x = torch.cat([x, y], dim=1) # [NCHW] Append to input as new channels. | |
return x | |
class FullyConnectedLayer(torch.nn.Module): | |
def __init__( | |
self, | |
in_features, # Number of input features. | |
out_features, # Number of output features. | |
bias=True, # Apply additive bias before the activation function? | |
activation="linear", # Activation function: 'relu', 'lrelu', etc. | |
lr_multiplier=1, # Learning rate multiplier. | |
bias_init=0, # Initial value for the additive bias. | |
): | |
super().__init__() | |
self.weight = torch.nn.Parameter( | |
torch.randn([out_features, in_features]) / lr_multiplier | |
) | |
self.bias = ( | |
torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) | |
if bias | |
else None | |
) | |
self.activation = activation | |
self.weight_gain = lr_multiplier / np.sqrt(in_features) | |
self.bias_gain = lr_multiplier | |
def forward(self, x): | |
w = self.weight * self.weight_gain | |
b = self.bias | |
if b is not None and self.bias_gain != 1: | |
b = b * self.bias_gain | |
if self.activation == "linear" and b is not None: | |
# out = torch.addmm(b.unsqueeze(0), x, w.t()) | |
x = x.matmul(w.t()) | |
out = x + b.reshape([-1 if i == x.ndim - 1 else 1 for i in range(x.ndim)]) | |
else: | |
x = x.matmul(w.t()) | |
out = bias_act(x, b, act=self.activation, dim=x.ndim - 1) | |
return out | |
def _conv2d_wrapper( | |
x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True | |
): | |
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations.""" | |
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w) | |
# Flip weight if requested. | |
if ( | |
not flip_weight | |
): # conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False). | |
w = w.flip([2, 3]) | |
# Workaround performance pitfall in cuDNN 8.0.5, triggered when using | |
# 1x1 kernel + memory_format=channels_last + less than 64 channels. | |
if ( | |
kw == 1 | |
and kh == 1 | |
and stride == 1 | |
and padding in [0, [0, 0], (0, 0)] | |
and not transpose | |
): | |
if x.stride()[1] == 1 and min(out_channels, in_channels_per_group) < 64: | |
if out_channels <= 4 and groups == 1: | |
in_shape = x.shape | |
x = w.squeeze(3).squeeze(2) @ x.reshape( | |
[in_shape[0], in_channels_per_group, -1] | |
) | |
x = x.reshape([in_shape[0], out_channels, in_shape[2], in_shape[3]]) | |
else: | |
x = x.to(memory_format=torch.contiguous_format) | |
w = w.to(memory_format=torch.contiguous_format) | |
x = conv2d(x, w, groups=groups) | |
return x.to(memory_format=torch.channels_last) | |
# Otherwise => execute using conv2d_gradfix. | |
op = conv_transpose2d if transpose else conv2d | |
return op(x, w, stride=stride, padding=padding, groups=groups) | |
def conv2d_resample( | |
x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False | |
): | |
r"""2D convolution with optional up/downsampling. | |
Padding is performed only once at the beginning, not between the operations. | |
Args: | |
x: Input tensor of shape | |
`[batch_size, in_channels, in_height, in_width]`. | |
w: Weight tensor of shape | |
`[out_channels, in_channels//groups, kernel_height, kernel_width]`. | |
f: Low-pass filter for up/downsampling. Must be prepared beforehand by | |
calling setup_filter(). None = identity (default). | |
up: Integer upsampling factor (default: 1). | |
down: Integer downsampling factor (default: 1). | |
padding: Padding with respect to the upsampled image. Can be a single number | |
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]` | |
(default: 0). | |
groups: Split input channels into N groups (default: 1). | |
flip_weight: False = convolution, True = correlation (default: True). | |
flip_filter: False = convolution, True = correlation (default: False). | |
Returns: | |
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`. | |
""" | |
# Validate arguments. | |
assert isinstance(x, torch.Tensor) and (x.ndim == 4) | |
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype) | |
assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2]) | |
assert isinstance(up, int) and (up >= 1) | |
assert isinstance(down, int) and (down >= 1) | |
# assert isinstance(groups, int) and (groups >= 1), f"!!!!!! groups: {groups} isinstance(groups, int) {isinstance(groups, int)} {type(groups)}" | |
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w) | |
fw, fh = _get_filter_size(f) | |
# px0, px1, py0, py1 = _parse_padding(padding) | |
px0, px1, py0, py1 = padding, padding, padding, padding | |
# Adjust padding to account for up/downsampling. | |
if up > 1: | |
px0 += (fw + up - 1) // 2 | |
px1 += (fw - up) // 2 | |
py0 += (fh + up - 1) // 2 | |
py1 += (fh - up) // 2 | |
if down > 1: | |
px0 += (fw - down + 1) // 2 | |
px1 += (fw - down) // 2 | |
py0 += (fh - down + 1) // 2 | |
py1 += (fh - down) // 2 | |
# Fast path: 1x1 convolution with downsampling only => downsample first, then convolve. | |
if kw == 1 and kh == 1 and (down > 1 and up == 1): | |
x = upfirdn2d( | |
x=x, f=f, down=down, padding=[px0, px1, py0, py1], flip_filter=flip_filter | |
) | |
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) | |
return x | |
# Fast path: 1x1 convolution with upsampling only => convolve first, then upsample. | |
if kw == 1 and kh == 1 and (up > 1 and down == 1): | |
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) | |
x = upfirdn2d( | |
x=x, | |
f=f, | |
up=up, | |
padding=[px0, px1, py0, py1], | |
gain=up**2, | |
flip_filter=flip_filter, | |
) | |
return x | |
# Fast path: downsampling only => use strided convolution. | |
if down > 1 and up == 1: | |
x = upfirdn2d(x=x, f=f, padding=[px0, px1, py0, py1], flip_filter=flip_filter) | |
x = _conv2d_wrapper( | |
x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight | |
) | |
return x | |
# Fast path: upsampling with optional downsampling => use transpose strided convolution. | |
if up > 1: | |
if groups == 1: | |
w = w.transpose(0, 1) | |
else: | |
w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw) | |
w = w.transpose(1, 2) | |
w = w.reshape( | |
groups * in_channels_per_group, out_channels // groups, kh, kw | |
) | |
px0 -= kw - 1 | |
px1 -= kw - up | |
py0 -= kh - 1 | |
py1 -= kh - up | |
pxt = max(min(-px0, -px1), 0) | |
pyt = max(min(-py0, -py1), 0) | |
x = _conv2d_wrapper( | |
x=x, | |
w=w, | |
stride=up, | |
padding=[pyt, pxt], | |
groups=groups, | |
transpose=True, | |
flip_weight=(not flip_weight), | |
) | |
x = upfirdn2d( | |
x=x, | |
f=f, | |
padding=[px0 + pxt, px1 + pxt, py0 + pyt, py1 + pyt], | |
gain=up**2, | |
flip_filter=flip_filter, | |
) | |
if down > 1: | |
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter) | |
return x | |
# Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d. | |
if up == 1 and down == 1: | |
if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0: | |
return _conv2d_wrapper( | |
x=x, w=w, padding=[py0, px0], groups=groups, flip_weight=flip_weight | |
) | |
# Fallback: Generic reference implementation. | |
x = upfirdn2d( | |
x=x, | |
f=(f if up > 1 else None), | |
up=up, | |
padding=[px0, px1, py0, py1], | |
gain=up**2, | |
flip_filter=flip_filter, | |
) | |
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight) | |
if down > 1: | |
x = upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter) | |
return x | |
class Conv2dLayer(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, # Number of input channels. | |
out_channels, # Number of output channels. | |
kernel_size, # Width and height of the convolution kernel. | |
bias=True, # Apply additive bias before the activation function? | |
activation="linear", # Activation function: 'relu', 'lrelu', etc. | |
up=1, # Integer upsampling factor. | |
down=1, # Integer downsampling factor. | |
resample_filter=[ | |
1, | |
3, | |
3, | |
1, | |
], # Low-pass filter to apply when resampling activations. | |
conv_clamp=None, # Clamp the output to +-X, None = disable clamping. | |
channels_last=False, # Expect the input to have memory_format=channels_last? | |
trainable=True, # Update the weights of this layer during training? | |
): | |
super().__init__() | |
self.activation = activation | |
self.up = up | |
self.down = down | |
self.register_buffer("resample_filter", setup_filter(resample_filter)) | |
self.conv_clamp = conv_clamp | |
self.padding = kernel_size // 2 | |
self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size**2)) | |
self.act_gain = activation_funcs[activation].def_gain | |
memory_format = ( | |
torch.channels_last if channels_last else torch.contiguous_format | |
) | |
weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to( | |
memory_format=memory_format | |
) | |
bias = torch.zeros([out_channels]) if bias else None | |
if trainable: | |
self.weight = torch.nn.Parameter(weight) | |
self.bias = torch.nn.Parameter(bias) if bias is not None else None | |
else: | |
self.register_buffer("weight", weight) | |
if bias is not None: | |
self.register_buffer("bias", bias) | |
else: | |
self.bias = None | |
def forward(self, x, gain=1): | |
w = self.weight * self.weight_gain | |
x = conv2d_resample( | |
x=x, | |
w=w, | |
f=self.resample_filter, | |
up=self.up, | |
down=self.down, | |
padding=self.padding, | |
) | |
act_gain = self.act_gain * gain | |
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None | |
out = bias_act( | |
x, self.bias, act=self.activation, gain=act_gain, clamp=act_clamp | |
) | |
return out | |
def torch_gc(): | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
gc.collect() | |
def set_seed(seed: int): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def get_scheduler(sd_sampler, scheduler_config): | |
# https://github.com/huggingface/diffusers/issues/4167 | |
keys_to_pop = ["use_karras_sigmas", "algorithm_type"] | |
scheduler_config = dict(scheduler_config) | |
for it in keys_to_pop: | |
scheduler_config.pop(it, None) | |
# fmt: off | |
samplers = { | |
SDSampler.dpm_plus_plus_2m: [DPMSolverMultistepScheduler], | |
SDSampler.dpm_plus_plus_2m_karras: [DPMSolverMultistepScheduler, dict(use_karras_sigmas=True)], | |
SDSampler.dpm_plus_plus_2m_sde: [DPMSolverMultistepScheduler, dict(algorithm_type="sde-dpmsolver++")], | |
SDSampler.dpm_plus_plus_2m_sde_karras: [DPMSolverMultistepScheduler, dict(algorithm_type="sde-dpmsolver++", use_karras_sigmas=True)], | |
SDSampler.dpm_plus_plus_sde: [DPMSolverSinglestepScheduler], | |
SDSampler.dpm_plus_plus_sde_karras: [DPMSolverSinglestepScheduler, dict(use_karras_sigmas=True)], | |
SDSampler.dpm2: [KDPM2DiscreteScheduler], | |
SDSampler.dpm2_karras: [KDPM2DiscreteScheduler, dict(use_karras_sigmas=True)], | |
SDSampler.dpm2_a: [KDPM2AncestralDiscreteScheduler], | |
SDSampler.dpm2_a_karras: [KDPM2AncestralDiscreteScheduler, dict(use_karras_sigmas=True)], | |
SDSampler.euler: [EulerDiscreteScheduler], | |
SDSampler.euler_a: [EulerAncestralDiscreteScheduler], | |
SDSampler.heun: [HeunDiscreteScheduler], | |
SDSampler.lms: [LMSDiscreteScheduler], | |
SDSampler.lms_karras: [LMSDiscreteScheduler, dict(use_karras_sigmas=True)], | |
SDSampler.ddim: [DDIMScheduler], | |
SDSampler.pndm: [PNDMScheduler], | |
SDSampler.uni_pc: [UniPCMultistepScheduler], | |
SDSampler.lcm: [LCMScheduler], | |
} | |
# fmt: on | |
if sd_sampler in samplers: | |
if len(samplers[sd_sampler]) == 2: | |
scheduler_cls, kwargs = samplers[sd_sampler] | |
else: | |
scheduler_cls, kwargs = samplers[sd_sampler][0], {} | |
return scheduler_cls.from_config(scheduler_config, **kwargs) | |
else: | |
raise ValueError(sd_sampler) | |
def is_local_files_only(**kwargs) -> bool: | |
from huggingface_hub.constants import HF_HUB_OFFLINE | |
return HF_HUB_OFFLINE or kwargs.get("local_files_only", False) | |
def handle_from_pretrained_exceptions(func, **kwargs): | |
try: | |
return func(**kwargs) | |
except ValueError as e: | |
if "You are trying to load the model files of the `variant=fp16`" in str(e): | |
logger.info("variant=fp16 not found, try revision=fp16") | |
try: | |
return func(**{**kwargs, "variant": None, "revision": "fp16"}) | |
except Exception as e: | |
logger.info("revision=fp16 not found, try revision=main") | |
return func(**{**kwargs, "variant": None, "revision": "main"}) | |
raise e | |
except OSError as e: | |
previous_traceback = traceback.format_exc() | |
if "RevisionNotFoundError: 404 Client Error." in previous_traceback: | |
logger.info("revision=fp16 not found, try revision=main") | |
return func(**{**kwargs, "variant": None, "revision": "main"}) | |
elif "Max retries exceeded" in previous_traceback: | |
logger.exception( | |
"Fetching model from HuggingFace failed. " | |
"If this is your first time downloading the model, you may need to set up proxy in terminal." | |
"If the model has already been downloaded, you can add --local-files-only when starting." | |
) | |
exit(-1) | |
raise e | |
except Exception as e: | |
raise e | |
def get_torch_dtype(device, no_half: bool): | |
device = str(device) | |
use_fp16 = not no_half | |
use_gpu = device == "cuda" | |
# https://github.com/huggingface/diffusers/issues/4480 | |
# pipe.enable_attention_slicing and float16 will cause black output on mps | |
# if device in ["cuda", "mps"] and use_fp16: | |
if device in ["cuda"] and use_fp16: | |
return use_gpu, torch.float16 | |
return use_gpu, torch.float32 | |
def enable_low_mem(pipe, enable: bool): | |
if torch.backends.mps.is_available(): | |
# https://huggingface.co/docs/diffusers/v0.25.0/en/api/pipelines/stable_diffusion/image_variation#diffusers.StableDiffusionImageVariationPipeline.enable_attention_slicing | |
# CUDA: Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch 2.0 or xFormers. | |
if enable: | |
pipe.enable_attention_slicing("max") | |
else: | |
# https://huggingface.co/docs/diffusers/optimization/mps | |
# Devices with less than 64GB of memory are recommended to use enable_attention_slicing | |
pipe.enable_attention_slicing() | |
if enable: | |
pipe.vae.enable_tiling() | |