Spaces:
Runtime error
Runtime error
import os | |
import PIL.Image | |
import cv2 | |
import torch | |
from diffusers import AutoencoderKL | |
from loguru import logger | |
from iopaint.schema import InpaintRequest, ModelType | |
from .base import DiffusionInpaintModel | |
from .helper.cpu_text_encoder import CPUTextEncoderWrapper | |
from .original_sd_configs import get_config_files | |
from .utils import ( | |
handle_from_pretrained_exceptions, | |
get_torch_dtype, | |
enable_low_mem, | |
is_local_files_only, | |
) | |
class SDXL(DiffusionInpaintModel): | |
name = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1" | |
pad_mod = 8 | |
min_size = 512 | |
lcm_lora_id = "latent-consistency/lcm-lora-sdxl" | |
model_id_or_path = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1" | |
def init_model(self, device: torch.device, **kwargs): | |
from diffusers.pipelines import StableDiffusionXLInpaintPipeline | |
use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False)) | |
if self.model_info.model_type == ModelType.DIFFUSERS_SDXL: | |
num_in_channels = 4 | |
else: | |
num_in_channels = 9 | |
if os.path.isfile(self.model_id_or_path): | |
self.model = StableDiffusionXLInpaintPipeline.from_single_file( | |
self.model_id_or_path, | |
torch_dtype=torch_dtype, | |
num_in_channels=num_in_channels, | |
load_safety_checker=False, | |
config_files=get_config_files() | |
) | |
else: | |
model_kwargs = { | |
**kwargs.get("pipe_components", {}), | |
"local_files_only": is_local_files_only(**kwargs), | |
} | |
if "vae" not in model_kwargs: | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype | |
) | |
model_kwargs["vae"] = vae | |
self.model = handle_from_pretrained_exceptions( | |
StableDiffusionXLInpaintPipeline.from_pretrained, | |
pretrained_model_name_or_path=self.model_id_or_path, | |
torch_dtype=torch_dtype, | |
variant="fp16", | |
**model_kwargs | |
) | |
enable_low_mem(self.model, kwargs.get("low_mem", False)) | |
if kwargs.get("cpu_offload", False) and use_gpu: | |
logger.info("Enable sequential cpu offload") | |
self.model.enable_sequential_cpu_offload(gpu_id=0) | |
else: | |
self.model = self.model.to(device) | |
if kwargs["sd_cpu_textencoder"]: | |
logger.info("Run Stable Diffusion TextEncoder on CPU") | |
self.model.text_encoder = CPUTextEncoderWrapper( | |
self.model.text_encoder, torch_dtype | |
) | |
self.model.text_encoder_2 = CPUTextEncoderWrapper( | |
self.model.text_encoder_2, torch_dtype | |
) | |
self.callback = kwargs.pop("callback", None) | |
def forward(self, image, mask, config: InpaintRequest): | |
"""Input image and output image have same size | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
return: BGR IMAGE | |
""" | |
self.set_scheduler(config) | |
img_h, img_w = image.shape[:2] | |
output = self.model( | |
image=PIL.Image.fromarray(image), | |
prompt=config.prompt, | |
negative_prompt=config.negative_prompt, | |
mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), | |
num_inference_steps=config.sd_steps, | |
strength=0.999 if config.sd_strength == 1.0 else config.sd_strength, | |
guidance_scale=config.sd_guidance_scale, | |
output_type="np", | |
callback_on_step_end=self.callback, | |
height=img_h, | |
width=img_w, | |
generator=torch.manual_seed(config.sd_seed), | |
).images[0] | |
output = (output * 255).round().astype("uint8") | |
output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
return output | |