Spaces:
Runtime error
Runtime error
import torch | |
import PIL | |
import cv2 | |
from PIL import Image | |
import numpy as np | |
from iopaint.helper import pad_img_to_modulo | |
def make_canny_control_image(image: np.ndarray) -> Image: | |
canny_image = cv2.Canny(image, 100, 200) | |
canny_image = canny_image[:, :, None] | |
canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2) | |
canny_image = PIL.Image.fromarray(canny_image) | |
control_image = canny_image | |
return control_image | |
def make_openpose_control_image(image: np.ndarray) -> Image: | |
from controlnet_aux import OpenposeDetector | |
processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
control_image = processor(image, hand_and_face=True) | |
return control_image | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize( | |
input_image, | |
(W, H), | |
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA, | |
) | |
return img | |
def make_depth_control_image(image: np.ndarray) -> Image: | |
from controlnet_aux import MidasDetector | |
midas = MidasDetector.from_pretrained("lllyasviel/Annotators") | |
origin_height, origin_width = image.shape[:2] | |
pad_image = pad_img_to_modulo(image, mod=64, square=False, min_size=512) | |
depth_image = midas(pad_image) | |
depth_image = depth_image[0:origin_height, 0:origin_width] | |
depth_image = depth_image[:, :, None] | |
depth_image = np.concatenate([depth_image, depth_image, depth_image], axis=2) | |
control_image = PIL.Image.fromarray(depth_image) | |
return control_image | |
def make_inpaint_control_image(image: np.ndarray, mask: np.ndarray) -> torch.Tensor: | |
""" | |
image: [H, W, C] RGB | |
mask: [H, W, 1] 255 means area to repaint | |
""" | |
image = image.astype(np.float32) / 255.0 | |
image[mask[:, :, -1] > 128] = -1.0 # set as masked pixel | |
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return image | |