ysharma's picture
ysharma HF staff
Duplicate from dreambooth-hackathon/leaderboard
3166b97
raw
history blame
5.13 kB
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
# %% auto 0
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
# %% app.ipynb 0
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
# %% app.ipynb 1
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
# Remove user from model name
return f'<a target="_blank" href="{link}">{model_name.split("/")[-1]}</a>'
def make_clickable_user(user_id):
link = "https://huggingface.co/" + user_id
return f'<a target="_blank" href="{link}">{user_id}</a>'
# %% app.ipynb 2
def get_submissions(category):
submissions = list_models(filter=["dreambooth-hackathon", category], full=True)
leaderboard_models = []
for submission in submissions:
# user, model, likes
user_id = submission.id.split("/")[0]
leaderboard_models.append(
(
make_clickable_user(user_id),
make_clickable_model(submission.id),
submission.likes,
)
)
df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes"])
df.sort_values(by=["Likes"], ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
return df
# %% app.ipynb 3
block = gr.Blocks()
with block:
gr.Markdown(
"""# The DreamBooth Hackathon Leaderboard
Welcome to the leaderboard for the DreamBooth Hackathon! This is a community event where particpants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject (e.g. your pet or favourite dish) into the output domain of the model such that it can be synthesized with a _unique identifier_ in the prompt.
This competition is composed of 5 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want!
For details on how to participate, check out the hackathon's guide [here](https://github.com/huggingface/diffusion-models-class/blob/main/hackathon/README.md).
"""
)
with gr.Tabs():
with gr.TabItem("Animal 🐨"):
with gr.Row():
animal_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("animal"), outputs=animal_data
)
with gr.TabItem("Science πŸ”¬"):
with gr.Row():
science_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("science"), outputs=science_data
)
with gr.TabItem("Food πŸ”"):
with gr.Row():
food_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions, inputs=gr.Variable("food"), outputs=food_data
)
with gr.TabItem("Landscape πŸ”"):
with gr.Row():
landscape_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions,
inputs=gr.Variable("landscape"),
outputs=landscape_data,
)
with gr.TabItem("Wilcard πŸ”₯"):
with gr.Row():
wildcard_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(
get_submissions,
inputs=gr.Variable("wildcard"),
outputs=wildcard_data,
)
block.load(get_submissions, inputs=gr.Variable("animal"), outputs=animal_data)
block.load(get_submissions, inputs=gr.Variable("science"), outputs=science_data)
block.load(get_submissions, inputs=gr.Variable("food"), outputs=food_data)
block.load(get_submissions, inputs=gr.Variable("landscape"), outputs=landscape_data)
block.load(get_submissions, inputs=gr.Variable("wildcard"), outputs=wildcard_data)
block.launch()