Spaces:
Runtime error
Runtime error
import os | |
import decord | |
import numpy as np | |
import random | |
import json | |
import torchvision | |
import torchvision.transforms as T | |
import torch | |
from glob import glob | |
from PIL import Image | |
from itertools import islice | |
from pathlib import Path | |
from .bucketing import sensible_buckets | |
decord.bridge.set_bridge('torch') | |
from torch.utils.data import Dataset | |
from einops import rearrange, repeat | |
def get_prompt_ids(prompt, tokenizer): | |
prompt_ids = tokenizer( | |
prompt, | |
truncation=True, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids | |
return prompt_ids | |
def read_caption_file(caption_file): | |
with open(caption_file, 'r', encoding="utf8") as t: | |
return t.read() | |
def get_text_prompt( | |
text_prompt: str = '', | |
fallback_prompt: str= '', | |
file_path:str = '', | |
ext_types=['.mp4'], | |
use_caption=False | |
): | |
try: | |
if use_caption: | |
if len(text_prompt) > 1: return text_prompt | |
caption_file = '' | |
# Use caption on per-video basis (One caption PER video) | |
for ext in ext_types: | |
maybe_file = file_path.replace(ext, '.txt') | |
if maybe_file.endswith(ext_types): continue | |
if os.path.exists(maybe_file): | |
caption_file = maybe_file | |
break | |
if os.path.exists(caption_file): | |
return read_caption_file(caption_file) | |
# Return fallback prompt if no conditions are met. | |
return fallback_prompt | |
return text_prompt | |
except: | |
print(f"Couldn't read prompt caption for {file_path}. Using fallback.") | |
return fallback_prompt | |
def get_video_frames(vr, start_idx, sample_rate=1, max_frames=24): | |
max_range = len(vr) | |
frame_number = sorted((0, start_idx, max_range))[1] | |
frame_range = range(frame_number, max_range, sample_rate) | |
frame_range_indices = list(frame_range)[:max_frames] | |
return frame_range_indices | |
def process_video(vid_path, use_bucketing, w, h, get_frame_buckets, get_frame_batch): | |
if use_bucketing: | |
vr = decord.VideoReader(vid_path) | |
resize = get_frame_buckets(vr) | |
video = get_frame_batch(vr, resize=resize) | |
else: | |
vr = decord.VideoReader(vid_path, width=w, height=h) | |
video = get_frame_batch(vr) | |
return video, vr | |
# https://github.com/ExponentialML/Video-BLIP2-Preprocessor | |
class VideoJsonDataset(Dataset): | |
def __init__( | |
self, | |
tokenizer = None, | |
width: int = 256, | |
height: int = 256, | |
n_sample_frames: int = 4, | |
sample_start_idx: int = 1, | |
frame_step: int = 1, | |
json_path: str ="", | |
json_data = None, | |
vid_data_key: str = "video_path", | |
preprocessed: bool = False, | |
use_bucketing: bool = False, | |
**kwargs | |
): | |
self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg") | |
self.use_bucketing = use_bucketing | |
self.tokenizer = tokenizer | |
self.preprocessed = preprocessed | |
self.vid_data_key = vid_data_key | |
self.train_data = self.load_from_json(json_path, json_data) | |
self.width = width | |
self.height = height | |
self.n_sample_frames = n_sample_frames | |
self.sample_start_idx = sample_start_idx | |
self.frame_step = frame_step | |
def build_json(self, json_data): | |
extended_data = [] | |
for data in json_data['data']: | |
for nested_data in data['data']: | |
self.build_json_dict( | |
data, | |
nested_data, | |
extended_data | |
) | |
json_data = extended_data | |
return json_data | |
def build_json_dict(self, data, nested_data, extended_data): | |
clip_path = nested_data['clip_path'] if 'clip_path' in nested_data else None | |
extended_data.append({ | |
self.vid_data_key: data[self.vid_data_key], | |
'frame_index': nested_data['frame_index'], | |
'prompt': nested_data['prompt'], | |
'clip_path': clip_path | |
}) | |
def load_from_json(self, path, json_data): | |
try: | |
with open(path) as jpath: | |
print(f"Loading JSON from {path}") | |
json_data = json.load(jpath) | |
return self.build_json(json_data) | |
except: | |
self.train_data = [] | |
print("Non-existant JSON path. Skipping.") | |
def validate_json(self, base_path, path): | |
return os.path.exists(f"{base_path}/{path}") | |
def get_frame_range(self, vr): | |
return get_video_frames( | |
vr, | |
self.sample_start_idx, | |
self.frame_step, | |
self.n_sample_frames | |
) | |
def get_vid_idx(self, vr, vid_data=None): | |
frames = self.n_sample_frames | |
if vid_data is not None: | |
idx = vid_data['frame_index'] | |
else: | |
idx = self.sample_start_idx | |
return idx | |
def get_frame_buckets(self, vr): | |
_, h, w = vr[0].shape | |
width, height = sensible_buckets(self.width, self.height, h, w) | |
# width, height = self.width, self.height | |
resize = T.transforms.Resize((height, width), antialias=True) | |
return resize | |
def get_frame_batch(self, vr, resize=None): | |
frame_range = self.get_frame_range(vr) | |
frames = vr.get_batch(frame_range) | |
video = rearrange(frames, "f h w c -> f c h w") | |
if resize is not None: video = resize(video) | |
return video | |
def process_video_wrapper(self, vid_path): | |
video, vr = process_video( | |
vid_path, | |
self.use_bucketing, | |
self.width, | |
self.height, | |
self.get_frame_buckets, | |
self.get_frame_batch | |
) | |
return video, vr | |
def train_data_batch(self, index): | |
# If we are training on individual clips. | |
if 'clip_path' in self.train_data[index] and \ | |
self.train_data[index]['clip_path'] is not None: | |
vid_data = self.train_data[index] | |
clip_path = vid_data['clip_path'] | |
# Get video prompt | |
prompt = vid_data['prompt'] | |
video, _ = self.process_video_wrapper(clip_path) | |
prompt_ids = get_prompt_ids(prompt, self.tokenizer) | |
return video, prompt, prompt_ids | |
# Assign train data | |
train_data = self.train_data[index] | |
# Get the frame of the current index. | |
self.sample_start_idx = train_data['frame_index'] | |
# Initialize resize | |
resize = None | |
video, vr = self.process_video_wrapper(train_data[self.vid_data_key]) | |
# Get video prompt | |
prompt = train_data['prompt'] | |
vr.seek(0) | |
prompt_ids = get_prompt_ids(prompt, self.tokenizer) | |
return video, prompt, prompt_ids | |
def __getname__(): return 'json' | |
def __len__(self): | |
if self.train_data is not None: | |
return len(self.train_data) | |
else: | |
return 0 | |
def __getitem__(self, index): | |
# Initialize variables | |
video = None | |
prompt = None | |
prompt_ids = None | |
# Use default JSON training | |
if self.train_data is not None: | |
video, prompt, prompt_ids = self.train_data_batch(index) | |
example = { | |
"pixel_values": (video / 127.5 - 1.0), | |
"prompt_ids": prompt_ids[0], | |
"text_prompt": prompt, | |
'dataset': self.__getname__() | |
} | |
return example | |
class SingleVideoDataset(Dataset): | |
def __init__( | |
self, | |
tokenizer = None, | |
width: int = 256, | |
height: int = 256, | |
n_sample_frames: int = 4, | |
frame_step: int = 1, | |
single_video_path: str = "", | |
single_video_prompt: str = "", | |
use_caption: bool = False, | |
use_bucketing: bool = False, | |
**kwargs | |
): | |
self.tokenizer = tokenizer | |
self.use_bucketing = use_bucketing | |
self.frames = [] | |
self.index = 1 | |
self.vid_types = (".mp4", ".avi", ".mov", ".webm", ".flv", ".mjpeg") | |
self.n_sample_frames = n_sample_frames | |
self.frame_step = frame_step | |
self.single_video_path = single_video_path | |
self.single_video_prompt = single_video_prompt | |
self.width = width | |
self.height = height | |
def create_video_chunks(self): | |
vr = decord.VideoReader(self.single_video_path) | |
vr_range = range(0, len(vr), self.frame_step) | |
self.frames = list(self.chunk(vr_range, self.n_sample_frames)) | |
return self.frames | |
def chunk(self, it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def get_frame_batch(self, vr, resize=None): | |
index = self.index | |
frames = vr.get_batch(self.frames[self.index]) | |
video = rearrange(frames, "f h w c -> f c h w") | |
if resize is not None: video = resize(video) | |
return video | |
def get_frame_buckets(self, vr): | |
_, h, w = vr[0].shape | |
# width, height = sensible_buckets(self.width, self.height, h, w) | |
width, height = self.width, self.height | |
resize = T.transforms.Resize((height, width), antialias=True) | |
return resize | |
def process_video_wrapper(self, vid_path): | |
video, vr = process_video( | |
vid_path, | |
self.use_bucketing, | |
self.width, | |
self.height, | |
self.get_frame_buckets, | |
self.get_frame_batch | |
) | |
return video, vr | |
def single_video_batch(self, index): | |
train_data = self.single_video_path | |
self.index = index | |
if train_data.endswith(self.vid_types): | |
video, _ = self.process_video_wrapper(train_data) | |
prompt = self.single_video_prompt | |
prompt_ids = get_prompt_ids(prompt, self.tokenizer) | |
return video, prompt, prompt_ids | |
else: | |
raise ValueError(f"Single video is not a video type. Types: {self.vid_types}") | |
def __getname__(): return 'single_video' | |
def __len__(self): | |
return len(self.create_video_chunks()) | |
def __getitem__(self, index): | |
video, prompt, prompt_ids = self.single_video_batch(index) | |
example = { | |
"pixel_values": (video / 127.5 - 1.0), | |
"prompt_ids": prompt_ids[0], | |
"text_prompt": prompt, | |
'dataset': self.__getname__() | |
} | |
return example | |
class ImageDataset(Dataset): | |
def __init__( | |
self, | |
tokenizer = None, | |
width: int = 256, | |
height: int = 256, | |
base_width: int = 256, | |
base_height: int = 256, | |
use_caption: bool = False, | |
image_dir: str = '', | |
single_img_prompt: str = '', | |
use_bucketing: bool = False, | |
fallback_prompt: str = '', | |
**kwargs | |
): | |
self.tokenizer = tokenizer | |
self.img_types = (".png", ".jpg", ".jpeg", '.bmp') | |
self.use_bucketing = use_bucketing | |
self.image_dir = self.get_images_list(image_dir) | |
self.fallback_prompt = fallback_prompt | |
self.use_caption = use_caption | |
self.single_img_prompt = single_img_prompt | |
self.width = width | |
self.height = height | |
def get_images_list(self, image_dir): | |
if os.path.exists(image_dir): | |
imgs = [x for x in os.listdir(image_dir) if x.endswith(self.img_types)] | |
full_img_dir = [] | |
for img in imgs: | |
full_img_dir.append(f"{image_dir}/{img}") | |
return sorted(full_img_dir) | |
return [''] | |
def image_batch(self, index): | |
train_data = self.image_dir[index] | |
img = train_data | |
try: | |
img = torchvision.io.read_image(img, mode=torchvision.io.ImageReadMode.RGB) | |
except: | |
img = T.transforms.PILToTensor()(Image.open(img).convert("RGB")) | |
width = self.width | |
height = self.height | |
if self.use_bucketing: | |
_, h, w = img.shape | |
width, height = sensible_buckets(width, height, w, h) | |
resize = T.transforms.Resize((height, width), antialias=True) | |
img = resize(img) | |
img = repeat(img, 'c h w -> f c h w', f=1) | |
prompt = get_text_prompt( | |
file_path=train_data, | |
text_prompt=self.single_img_prompt, | |
fallback_prompt=self.fallback_prompt, | |
ext_types=self.img_types, | |
use_caption=True | |
) | |
prompt_ids = get_prompt_ids(prompt, self.tokenizer) | |
return img, prompt, prompt_ids | |
def __getname__(): return 'image' | |
def __len__(self): | |
# Image directory | |
if os.path.exists(self.image_dir[0]): | |
return len(self.image_dir) | |
else: | |
return 0 | |
def __getitem__(self, index): | |
img, prompt, prompt_ids = self.image_batch(index) | |
example = { | |
"pixel_values": (img / 127.5 - 1.0), | |
"prompt_ids": prompt_ids[0], | |
"text_prompt": prompt, | |
'dataset': self.__getname__() | |
} | |
return example | |
class VideoFolderDataset(Dataset): | |
def __init__( | |
self, | |
tokenizer=None, | |
width: int = 256, | |
height: int = 256, | |
n_sample_frames: int = 16, | |
fps: int = 8, | |
path: str = "./data", | |
fallback_prompt: str = "", | |
use_bucketing: bool = False, | |
**kwargs | |
): | |
self.tokenizer = tokenizer | |
self.use_bucketing = use_bucketing | |
self.fallback_prompt = fallback_prompt | |
self.video_files = glob(f"{path}/*.mp4") | |
self.width = width | |
self.height = height | |
self.n_sample_frames = n_sample_frames | |
self.fps = fps | |
def get_frame_buckets(self, vr): | |
_, h, w = vr[0].shape | |
width, height = sensible_buckets(self.width, self.height, h, w) | |
# width, height = self.width, self.height | |
resize = T.transforms.Resize((height, width), antialias=True) | |
return resize | |
def get_frame_batch(self, vr, resize=None): | |
n_sample_frames = self.n_sample_frames | |
native_fps = vr.get_avg_fps() | |
every_nth_frame = max(1, round(native_fps / self.fps)) | |
every_nth_frame = min(len(vr), every_nth_frame) | |
effective_length = len(vr) // every_nth_frame | |
if effective_length < n_sample_frames: | |
n_sample_frames = effective_length | |
effective_idx = random.randint(0, (effective_length - n_sample_frames)) | |
idxs = every_nth_frame * np.arange(effective_idx, effective_idx + n_sample_frames) | |
video = vr.get_batch(idxs) | |
video = rearrange(video, "f h w c -> f c h w") | |
if resize is not None: video = resize(video) | |
return video, vr | |
def process_video_wrapper(self, vid_path): | |
video, vr = process_video( | |
vid_path, | |
self.use_bucketing, | |
self.width, | |
self.height, | |
self.get_frame_buckets, | |
self.get_frame_batch | |
) | |
return video, vr | |
def get_prompt_ids(self, prompt): | |
return self.tokenizer( | |
prompt, | |
truncation=True, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids | |
def __getname__(): return 'folder' | |
def __len__(self): | |
return len(self.video_files) | |
def __getitem__(self, index): | |
video, _ = self.process_video_wrapper(self.video_files[index]) | |
prompt = self.fallback_prompt | |
prompt_ids = self.get_prompt_ids(prompt) | |
return {"pixel_values": (video[0] / 127.5 - 1.0), "prompt_ids": prompt_ids[0], "text_prompt": prompt, 'dataset': self.__getname__()} | |
class CachedDataset(Dataset): | |
def __init__(self,cache_dir: str = ''): | |
self.cache_dir = cache_dir | |
self.cached_data_list = self.get_files_list() | |
def get_files_list(self): | |
tensors_list = [f"{self.cache_dir}/{x}" for x in os.listdir(self.cache_dir) if x.endswith('.pt')] | |
return sorted(tensors_list) | |
def __len__(self): | |
return len(self.cached_data_list) | |
def __getitem__(self, index): | |
cached_latent = torch.load(self.cached_data_list[index], map_location='cuda:0') | |
return cached_latent | |