compare-moe-uvnote / cells /gptoss_run.py
drbh's picture
drbh HF Staff
Upload folder using huggingface_hub
bad4ddc verified
# /// script
# dependencies = [
# "torch",
# "numpy",
# ]
# ///
import torch
from torch import nn
from torch.nn import functional as F
from utils import to_dtype, tensor_stats, set_seed, bench_context
from config import (
NUM_EXPERTS, HIDDEN_SIZE, TOP_K,
BATCH_SIZE, SEQ_LEN, DTYPE, DEVICE,
WEIGHT_SEED, EXPERT_SEED, INPUT_SEED, GENERAL_SEED
)
from pathlib import Path
import os
# Discover the upstream artifact directory from env
data_dir = os.environ.get('UVNOTE_INPUT_SAVE_DATA', '.')
# list all the files in the directory
print(f"Loading weights from: {data_dir}")
print(f"Files in directory: {list(Path(data_dir).glob('*'))}")
router_weight = torch.load(Path(data_dir) / 'router_weight.pt')
router_bias = torch.load(Path(data_dir) / 'router_bias.pt')
gate_up_proj = torch.load(Path(data_dir) / 'gate_up_proj.pt')
gate_up_proj_bias = torch.load(Path(data_dir) / 'gate_up_proj_bias.pt')
down_proj = torch.load(Path(data_dir) / 'down_proj.pt')
down_proj_bias = torch.load(Path(data_dir) / 'down_proj_bias.pt')
print("Loaded shared weights from artifacts")
print(f"Router weight sum: {router_weight.sum().item():.6f}")
print(f"Gate/up sum: {gate_up_proj.sum().item():.6f}")
print(f"Down sum: {down_proj.sum().item():.6f}")
class GptOssRouter(nn.Module):
def __init__(self, router_weight, router_bias):
super().__init__()
self.top_k = TOP_K
self.num_experts = NUM_EXPERTS
self.hidden_dim = HIDDEN_SIZE
self.weight = nn.Parameter(router_weight.clone())
self.bias = nn.Parameter(router_bias.clone())
def forward(self, hidden_states):
hidden_states = hidden_states.reshape(-1, self.hidden_dim)
router_logits = F.linear(hidden_states, self.weight, self.bias)
router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1)
router_top_value = torch.nn.functional.softmax(router_top_value, dim=1, dtype=router_top_value.dtype)
router_scores = torch.zeros_like(router_logits).scatter_(1, router_indices, router_top_value)
return router_scores, router_indices
class GptOssExperts(nn.Module):
def __init__(self, gate_up_proj, gate_up_proj_bias, down_proj, down_proj_bias):
super().__init__()
self.num_experts = NUM_EXPERTS
self.hidden_size = HIDDEN_SIZE
self.expert_dim = self.hidden_size
self.gate_up_proj = nn.Parameter(gate_up_proj.clone())
self.gate_up_proj_bias = nn.Parameter(gate_up_proj_bias.clone())
self.down_proj = nn.Parameter(down_proj.clone())
self.down_proj_bias = nn.Parameter(down_proj_bias.clone())
self.alpha = 1.702
self.limit = 7.0
def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor:
batch_size = hidden_states.shape[0]
hidden_states = hidden_states.reshape(-1, self.hidden_size)
num_experts = routing_weights.shape[1]
if hidden_states.device.type == "cpu" or self.training:
next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device)
with torch.no_grad():
expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts)
expert_mask = expert_mask.permute(2, 1, 0)
expert_hit = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero()
for expert_idx in expert_hit[:]:
expert_idx = expert_idx[0]
with torch.no_grad():
_, token_idx = torch.where(expert_mask[expert_idx])
current_state = hidden_states[token_idx]
gate_up = current_state @ self.gate_up_proj[expert_idx] + self.gate_up_proj_bias[expert_idx]
gate, up = gate_up[..., ::2], gate_up[..., 1::2]
gate = gate.clamp(min=None, max=self.limit)
up = up.clamp(min=-self.limit, max=self.limit)
glu = gate * torch.sigmoid(gate * self.alpha)
gated_output = (up + 1) * glu
out = gated_output @ self.down_proj[expert_idx] + self.down_proj_bias[expert_idx]
weighted_output = out * routing_weights[token_idx, expert_idx, None]
next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype))
next_states = next_states.view(batch_size, -1, self.hidden_size)
else:
hidden_states = hidden_states.repeat(num_experts, 1)
hidden_states = hidden_states.view(num_experts, -1, self.hidden_size)
gate_up = torch.bmm(hidden_states, self.gate_up_proj) + self.gate_up_proj_bias[..., None, :]
gate, up = gate_up[..., ::2], gate_up[..., 1::2]
gate = gate.clamp(min=None, max=self.limit)
up = up.clamp(min=-self.limit, max=self.limit)
glu = gate * torch.sigmoid(gate * self.alpha)
next_states = torch.bmm(((up + 1) * glu), self.down_proj)
next_states = next_states + self.down_proj_bias[..., None, :]
next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size)
next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None]
next_states = next_states.sum(dim=0)
return next_states
class GptOssMoEMLP(nn.Module):
def __init__(self, router_weight, router_bias, gate_up_proj, gate_up_proj_bias, down_proj, down_proj_bias):
super().__init__()
self.router = GptOssRouter(router_weight, router_bias)
self.experts = GptOssExperts(gate_up_proj, gate_up_proj_bias, down_proj, down_proj_bias)
def forward(self, hidden_states):
router_scores, router_indices = self.router(hidden_states)
routed_out = self.experts(hidden_states, router_indices=router_indices, routing_weights=router_scores)
return routed_out, router_scores
# Run the model
set_seed(GENERAL_SEED)
device = torch.device(DEVICE)
dtype = to_dtype(DTYPE)
print("\n=== GPT-OSS Implementation ===")
# Initialize model with loaded weights
model = GptOssMoEMLP(
router_weight.to(device, dtype=dtype),
router_bias.to(device, dtype=dtype),
gate_up_proj.to(device, dtype=dtype),
gate_up_proj_bias.to(device, dtype=dtype),
down_proj.to(device, dtype=dtype),
down_proj_bias.to(device, dtype=dtype)
).to(device=device, dtype=dtype)
print(f"Router weight sum: {model.router.weight.sum().item():.6f}")
print(f"Gate/up proj sum: {model.experts.gate_up_proj.sum().item():.6f}")
print(f"Down proj sum: {model.experts.down_proj.sum().item():.6f}")
# Benchmark the model using different input tensors on each iteration
tokens = BATCH_SIZE * SEQ_LEN
input_shape = (BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE)
with bench_context(warmup=10, iters=50, device=device, dtype=dtype, tokens=tokens,
save_json="gptoss_results.json", input_shape=input_shape, input_seed_base=INPUT_SEED) as bench:
output, stats = bench(model)
print(f"\nOutput sum: {output[0].sum().item():.6f}")