Spaces:
Running
Running
import argparse | |
import os | |
import validators | |
from config import * | |
from download_video import download_video | |
from bg_modeling import capture_slides_bg_modeling | |
from frame_differencing import capture_slides_frame_diff | |
from post_process import remove_duplicates | |
from utils import create_output_directory, convert_slides_to_pdf | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description="This script is used to convert video frames into slide PDFs." | |
) | |
parser.add_argument( | |
"-v", "--video_path", help="Path to the video file, video url, or YouTube video link", type=str | |
) | |
parser.add_argument( | |
"-o", | |
"--out_dir", | |
default="output_results", | |
help="Path to the output directory", | |
type=str, | |
) | |
parser.add_argument( | |
"--type", | |
help="type of background subtraction to be used", | |
default="GMG", | |
choices=["Frame_Diff", "GMG", "KNN"], | |
type=str, | |
) | |
parser.add_argument( | |
"-hf", | |
"--hash-func", | |
help="Hash function to use for image hashing. Only effective if post-processing is enabled", | |
default=HASH_FUNC, | |
choices=["dhash", "phash", "ahash"], | |
type=str, | |
) | |
parser.add_argument( | |
"-hs", | |
"--hash-size", | |
help="Hash size to use for image hashing. Only effective if post-processing is enabled", | |
default=HASH_SIZE, | |
choices=[8, 12, 16], | |
type=int, | |
) | |
parser.add_argument( | |
"--threshold", | |
help="Minimum similarity threshold (in percent) to consider 2 images to be similar. Only effective if post-processing is enabled", | |
default=SIM_THRESHOLD, | |
choices=range(90, 101), | |
type=int, | |
) | |
parser.add_argument( | |
"-q", | |
"--queue-len", | |
help="Number of history images used to find out duplicate image. Only effective if post-processing is enabled", | |
default=HASH_BUFFER_HISTORY, | |
type=int, | |
) | |
parser.add_argument( | |
"--no_post_process", | |
action="store_true", | |
default=False, | |
help="flag to apply post processing or not", | |
) | |
parser.add_argument( | |
"--convert_to_pdf", | |
action="store_true", | |
default=False, | |
help="flag to convert the entire image set to pdf or not", | |
) | |
args = parser.parse_args() | |
queue_len = args.queue_len | |
if queue_len <= 0: | |
print( | |
f"Warnings: queue_len argument must be positive. Fallback to {HASH_BUFFER_HISTORY}" | |
) | |
queue_len = HASH_BUFFER_HISTORY | |
video_path = args.video_path | |
output_dir_path = args.out_dir | |
type_bg_sub = args.type | |
temp_file = False | |
if validators.url(video_path): | |
video_path = download_video(video_path) | |
temp_file = True | |
if video_path is None: | |
exit(1) | |
elif not os.path.exists(video_path): | |
raise ValueError( | |
"The video doesn't exist or isn't a valid URL. Please check your video path again" | |
) | |
output_dir_path = create_output_directory(video_path, output_dir_path, type_bg_sub) | |
if type_bg_sub.lower() == "frame_diff": | |
capture_slides_frame_diff(video_path, output_dir_path) | |
else: | |
if type_bg_sub.lower() == "gmg": | |
thresh = DEC_THRESH | |
elif type_bg_sub.lower() == "knn": | |
thresh = DIST_THRESH | |
capture_slides_bg_modeling( | |
video_path, | |
output_dir_path, | |
type_bgsub=type_bg_sub, | |
history=FRAME_BUFFER_HISTORY, | |
threshold=thresh, | |
MIN_PERCENT_THRESH=MIN_PERCENT, | |
MAX_PERCENT_THRESH=MAX_PERCENT, | |
) | |
# Perform post-processing using difference hashing technique to remove duplicate slides. | |
if not args.no_post_process: | |
hash_size = args.hash_size | |
hash_func = HASH_FUNC_DICT.get(args.hash_func) | |
sim_threshold = args.threshold | |
diff_threshold = int(hash_size * hash_size * (100 - sim_threshold) / 100) | |
remove_duplicates( | |
output_dir_path, hash_size, hash_func, queue_len, diff_threshold | |
) | |
if args.convert_to_pdf: | |
convert_slides_to_pdf(output_dir_path) | |
# if temp_file: | |
# os.remove(video_path) | |