Spaces:
Running
Running
import gradio as gr | |
import os | |
import validators | |
from imutils import paths | |
from config import * | |
from download_video import download_video | |
from bg_modeling import capture_slides_bg_modeling | |
from frame_differencing import capture_slides_frame_diff | |
from post_process import remove_duplicates | |
from utils import create_output_directory, convert_slides_to_pdf | |
def process( | |
video_path, | |
bg_type, | |
frame_buffer_history, | |
hash_size, | |
hash_func, | |
hash_queue_len, | |
sim_threshold, | |
): | |
output_dir_path = "output_results" | |
output_dir_path = create_output_directory(video_path, output_dir_path, bg_type) | |
if bg_type.lower() == "Frame Diff": | |
capture_slides_frame_diff(video_path, output_dir_path) | |
else: | |
if bg_type.lower() == "gmg": | |
thresh = DEC_THRESH | |
elif bg_type.lower() == "knn": | |
thresh = DIST_THRESH | |
capture_slides_bg_modeling( | |
video_path, | |
output_dir_path, | |
type_bgsub=bg_type, | |
history=frame_buffer_history, | |
threshold=thresh, | |
MIN_PERCENT_THRESH=MIN_PERCENT, | |
MAX_PERCENT_THRESH=MAX_PERCENT, | |
) | |
# Perform post-processing using difference hashing technique to remove duplicate slides. | |
hash_func = HASH_FUNC_DICT.get(hash_func.lower()) | |
diff_threshold = int(hash_size * hash_size * (100 - sim_threshold) / 100) | |
remove_duplicates( | |
output_dir_path, hash_size, hash_func, hash_queue_len, diff_threshold | |
) | |
pdf_path = convert_slides_to_pdf(output_dir_path) | |
# Remove unneccessary files | |
os.remove(video_path) | |
for image_path in paths.list_images(output_dir_path): | |
os.remove(image_path) | |
return pdf_path | |
def process_file( | |
file_obj, | |
bg_type, | |
frame_buffer_history, | |
hash_size, | |
hash_func, | |
hash_queue_len, | |
sim_threshold, | |
): | |
return process( | |
file_obj.name, | |
bg_type, | |
frame_buffer_history, | |
hash_size, | |
hash_func, | |
hash_queue_len, | |
sim_threshold, | |
) | |
def process_via_url( | |
url, | |
bg_type, | |
frame_buffer_history, | |
hash_size, | |
hash_func, | |
hash_queue_len, | |
sim_threshold, | |
): | |
if validators.url(url): | |
video_path = download_video(url) | |
if video_path is None: | |
raise gr.Error("An error occurred while downloading the video, please try again later") | |
return process( | |
video_path, | |
bg_type, | |
frame_buffer_history, | |
hash_size, | |
hash_func, | |
hash_queue_len, | |
sim_threshold, | |
) | |
else: | |
raise gr.Error("Please enter a valid video URL") | |
with gr.Blocks(css="style.css") as demo: | |
with gr.Row(elem_classes=["container"]): | |
gr.Markdown( | |
""" | |
# Video 2 Slides Converter | |
Convert your video presentation into PDF slides with one click. | |
You can browse your video from the local file system, or enter a video URL/YouTube video link to start processing. | |
**Note**: | |
- It will take some time to complete (~ half of the original video length), so stay tuned! | |
- If the YouTube video link doesn't work, you can try again later or download video to your computer and then upload it to the app | |
- Remember to press Enter if you are using an external URL | |
""", | |
elem_id="container", | |
) | |
with gr.Row(elem_classes=["container"]): | |
with gr.Column(scale=1): | |
with gr.Accordion("Advanced parameters"): | |
bg_type = gr.Dropdown( | |
["Frame Diff", "GMG", "KNN"], | |
value="GMG", | |
label="Background subtraction", | |
info="Type of background subtraction to be used", | |
) | |
frame_buffer_history = gr.Slider( | |
minimum=5, | |
maximum=20, | |
value=FRAME_BUFFER_HISTORY, | |
step=5, | |
label="Frame buffer history", | |
info="Length of the frame buffer history to model background.", | |
) | |
# Post process | |
hash_func = gr.Dropdown( | |
["Difference hashing", "Perceptual hashing", "Average hashing"], | |
value="Difference hashing", | |
label="Background subtraction", | |
info="Hash function to use for image hashing", | |
) | |
hash_size = gr.Slider( | |
minimum=8, | |
maximum=16, | |
value=HASH_SIZE, | |
step=2, | |
label="Hash size", | |
info="Hash size to use for image hashing", | |
) | |
hash_queue_len = gr.Slider( | |
minimum=5, | |
maximum=15, | |
value=HASH_BUFFER_HISTORY, | |
step=5, | |
label="Hash queue len", | |
info="Number of history images used to find out duplicate image", | |
) | |
sim_threshold = gr.Slider( | |
minimum=90, | |
maximum=100, | |
value=SIM_THRESHOLD, | |
step=1, | |
label="Similarity threshold", | |
info="Minimum similarity threshold (in percent) to consider 2 images to be similar", | |
) | |
with gr.Column(scale=2): | |
with gr.Row(elem_id="row-flex"): | |
with gr.Column(scale=3): | |
file_url = gr.Textbox( | |
value="", | |
label="Upload your file", | |
placeholder="Enter a video url or YouTube video link", | |
show_label=False, | |
) | |
with gr.Column(scale=1, min_width=160): | |
upload_button = gr.UploadButton("Browse File", file_types=["video"]) | |
file_output = gr.File(file_types=[".pdf"], label="Output PDF") | |
gr.Examples( | |
[ | |
[ | |
"https://www.youtube.com/watch?v=bfmFfD2RIcg", | |
"output_results/Neural Network In 5 Minutes.pdf", | |
], | |
[ | |
"https://www.youtube.com/watch?v=EEo10bgsh0k", | |
"output_results/react-in-5-minutes.pdf", | |
], | |
], | |
[file_url, file_output], | |
) | |
file_url.submit( | |
process_via_url, | |
[ | |
file_url, | |
bg_type, | |
frame_buffer_history, | |
hash_size, | |
hash_func, | |
hash_queue_len, | |
sim_threshold, | |
], | |
file_output, | |
) | |
upload_button.upload( | |
process_file, | |
[ | |
upload_button, | |
bg_type, | |
frame_buffer_history, | |
hash_size, | |
hash_func, | |
hash_queue_len, | |
sim_threshold, | |
], | |
file_output, | |
) | |
demo.queue(concurrency_count=4).launch() | |