nanosam / app.py
dragonSwing's picture
Upload files
67d4d3e
import numpy as np
import os
from nanosam import Predictor
import gradio as gr
import time
from PIL import ImageDraw
from utils import download_file_from_url, fast_process, format_results, point_prompt
# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Huge thanks for AN-619.
if not os.path.exists("onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx"):
download_file_from_url(
"https://huggingface.co/dragonSwing/nanosam/resolve/main/sam_hgv2_b4_ln_nonorm_image_encoder.onnx",
"onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx",
)
if not os.path.exists("onnx/efficientvit_l0_mask_decoder.onnx"):
download_file_from_url(
"https://huggingface.co/dragonSwing/nanosam/resolve/main/efficientvit_l0_mask_decoder.onnx",
"onnx/efficientvit_l0_mask_decoder.onnx",
)
# Load the pre-trained model
image_encoder_cfg = {
"path": "onnx/sam_hgv2_b4_ln_nonorm_image_encoder.onnx",
"provider": "cpu",
"normalize_input": False,
}
mask_decoder_cfg = {
"path": "onnx/efficientvit_l0_mask_decoder.onnx",
"provider": "cpu",
}
predictor = Predictor(image_encoder_cfg, mask_decoder_cfg)
# Description
title = "<center><strong><font size='8'>Faster Segment Anything(NanoSAM)<font></strong></center>"
description_p = """ ## This is a demo of [Faster Segment Anything(NanoSAM) Model](https://github.com/binh234/nanosam).
# Instructions for point mode
0. Restart by click the Restart button
1. Select a point with Add Mask for the foreground (Must)
2. Select a point with Remove Area for the background (Optional)
3. Click the Start Segmenting.
- Github [link](https://github.com/binh234/nanosam)
- Model Card [link](https://huggingface.co/dragoswing/nanosam)
We will provide box mode soon.
Enjoy!
"""
examples = [
["assets/picture3.jpg"],
["assets/picture4.jpg"],
["assets/picture5.jpg"],
["assets/picture6.jpg"],
["assets/picture1.jpg"],
["assets/picture2.jpg"],
["assets/dogs.jpg"],
]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def get_empty_state():
return {"points": [], "point_labels": [], "features": None}
def clear():
return None, None, get_empty_state()
def set_image(image):
state = get_empty_state()
start = time.perf_counter()
predictor.set_image(image)
end = time.perf_counter()
print(f"Encoder time: {end - start: .3f}s")
state["features"] = predictor.features
return state
def segment_with_points(
image,
state,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
global predictor
points = np.asarray(state["points"])
point_labels = np.asarray(state["point_labels"])
if len(points) == 0 and len(point_labels) == 0:
raise gr.Error("No points selected")
if len(points) != len(point_labels):
raise gr.Error("Mismatch length between points and point labels")
if state["features"] is None:
raise gr.Error(
"Image was not set correctly, please wait for a moment after uploading image before drawing points!"
)
predictor.features = state["features"]
img_w, img_h = image.size
predictor.original_size = (img_h, img_w)
start = time.perf_counter()
masks, scores, logits = predictor.predict(
points=points,
point_labels=point_labels,
)
end = time.perf_counter()
print(f"Decoder time: {end - start: .3f}s")
# results = format_results(masks[0], scores[0], logits[0], 0)
# annotations, _ = point_prompt(results, points, point_labels, img_h, img_w)
# annotations = np.array([annotations])
fig = fast_process(
annotations=[masks[0, scores.argmax()] > 0],
image=image,
scale=1,
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,
)
# return fig, None
return fig
def get_points_with_draw(image, label, evt: gr.SelectData, state):
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 15, (
(255, 255, 0)
if label == "Add Mask"
else (
255,
0,
255,
)
)
state["points"].append([x, y])
state["point_labels"].append(1 if label == "Add Mask" else 0)
print(x, y, label == "Add Mask")
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
return image, state
cond_img_p = gr.Image(label="Input with points", type="pil", interactive=True)
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type="pil")
global_points = []
global_point_labels = []
with gr.Blocks(css=css, title="Faster Segment Anything(NanoSAM)") as demo:
state = gr.State(value=get_empty_state())
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Point mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
add_or_remove = gr.Radio(
["Add Mask", "Remove Area"],
value="Add Mask",
)
with gr.Column():
segment_btn_p = gr.Button("Start segmenting!", variant="primary")
restart_btn_p = gr.Button("Restart", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(
examples=examples,
inputs=[cond_img_p],
outputs=[state],
fn=set_image,
run_on_click=True,
examples_per_page=4,
)
with gr.Column():
# Description
gr.Markdown(description_p)
cond_img_p.upload(set_image, inputs=[cond_img_p], outputs=[state])
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove, state], [cond_img_p, state])
segment_btn_p.click(segment_with_points, [cond_img_p, state], [segm_img_p])
restart_btn_p.click(clear, outputs=[cond_img_p, segm_img_p, state])
demo.queue().launch()