|
|
import gradio as gr |
|
|
import os |
|
|
from openai import OpenAI |
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
|
|
|
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY") |
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
|
|
|
openai_client = OpenAI(api_key=OPENAI_API_KEY) |
|
|
deepseek_client = OpenAI(api_key=DEEPSEEK_API_KEY, base_url="https://api.deepseek.com") |
|
|
|
|
|
def generate_response(model_provider, prompt, temperature, top_p, max_tokens, repetition_penalty): |
|
|
if model_provider == "DeepSeek": |
|
|
try: |
|
|
response = deepseek_client.chat.completions.create( |
|
|
model="deepseek-chat", |
|
|
messages=[{"role": "user", "content": prompt}], |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
max_tokens=max_tokens, |
|
|
presence_penalty=repetition_penalty, |
|
|
stream=False |
|
|
) |
|
|
return response.choices[0].message.content.strip() |
|
|
except Exception as e: |
|
|
return f"DeepSeek API Error: {str(e)}" |
|
|
elif model_provider == "OpenAI": |
|
|
try: |
|
|
response = openai_client.chat.completions.create( |
|
|
model="gpt-3.5-turbo", |
|
|
messages=[{"role": "user", "content": prompt}], |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
max_tokens=max_tokens, |
|
|
presence_penalty=repetition_penalty, |
|
|
stream=False |
|
|
) |
|
|
return response.choices[0].message.content.strip() |
|
|
except Exception as e: |
|
|
return f"OpenAI API Error: {str(e)}" |
|
|
else: |
|
|
return "Invalid model provider selected." |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("## π LLM Chat Interface") |
|
|
with gr.Row(): |
|
|
model_provider = gr.Dropdown( |
|
|
choices=["DeepSeek", "OpenAI"], |
|
|
value="DeepSeek", |
|
|
label="Select Model Provider" |
|
|
) |
|
|
prompt = gr.Textbox(label="Enter your prompt", lines=4, placeholder="Type your message here...") |
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
temperature = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature") |
|
|
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p") |
|
|
max_tokens = gr.Slider(32, 2048, value=512, step=32, label="Max New Tokens") |
|
|
repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty") |
|
|
output = gr.Textbox(label="Response") |
|
|
submit = gr.Button("Generate") |
|
|
|
|
|
submit.click( |
|
|
fn=generate_response, |
|
|
inputs=[prompt, model_provider, temperature, top_p, max_tokens, repetition_penalty], |
|
|
outputs=output |
|
|
) |
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=generate_response, |
|
|
inputs=[ |
|
|
gr.Dropdown(choices=["DeepSeek", "OpenAI"], value="DeepSeek", label="Model Provider"), |
|
|
gr.Textbox(label="Prompt", lines=6, placeholder="Ask something..."), |
|
|
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature"), |
|
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p"), |
|
|
gr.Slider(minimum=32, maximum=2048, value=512, step=32, label="Max New Tokens"), |
|
|
gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty") |
|
|
], |
|
|
outputs="text", |
|
|
title="π§ DeepSeek LLM Chat with Parameter Tuning", |
|
|
theme=gr.themes.Soft() |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
iface.launch() |