Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- detect_language.py +29 -0
- sentiment_analysis_v2.py +93 -0
detect_language.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
|
3 |
+
class LanguageDetector:
|
4 |
+
|
5 |
+
def __init__(self):
|
6 |
+
# Download the model file
|
7 |
+
#model_path = hf_hub_download("facebook/fasttext-language-identification", "model.bin")
|
8 |
+
# Load the FastText model
|
9 |
+
#self.model = fasttext.load_model(model_path)
|
10 |
+
|
11 |
+
self.tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
12 |
+
self.model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
13 |
+
|
14 |
+
# Function to predict the language of a text
|
15 |
+
def predict_language(self, text):
|
16 |
+
# Tokenize the input text
|
17 |
+
inputs = self.tokenizer(text, return_tensors="pt")
|
18 |
+
|
19 |
+
# Get the model's predictions
|
20 |
+
outputs = self.model(**inputs)
|
21 |
+
|
22 |
+
# Find the index of the highest score
|
23 |
+
prediction_idx = outputs.logits.argmax(dim=-1).item()
|
24 |
+
|
25 |
+
# Convert the index to the corresponding language code using the model's config.id2label
|
26 |
+
language_code = self.model.config.id2label[prediction_idx]
|
27 |
+
|
28 |
+
return language_code
|
29 |
+
|
sentiment_analysis_v2.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
from transformers_interpret import SequenceClassificationExplainer
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
|
7 |
+
class SentimentAnalysis:
|
8 |
+
"""
|
9 |
+
Sentiment on text data.
|
10 |
+
Attributes:
|
11 |
+
tokenizer: An instance of Hugging Face Tokenizer
|
12 |
+
model: An instance of Hugging Face Model
|
13 |
+
explainer: An instance of SequenceClassificationExplainer from Transformers interpret
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self):
|
17 |
+
# Load Tokenizer & Model
|
18 |
+
hub_location = 'cardiffnlp/twitter-roberta-base-sentiment'
|
19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(hub_location)
|
20 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(hub_location)
|
21 |
+
|
22 |
+
hub_location_sp = 'finiteautomata/beto-sentiment-analysis'
|
23 |
+
self.tokenizer_sp = AutoTokenizer.from_pretrained(hub_location_sp)
|
24 |
+
self.model_sp = AutoModelForSequenceClassification.from_pretrained(hub_location_sp)
|
25 |
+
|
26 |
+
# Change model labels in config
|
27 |
+
self.model.config.id2label[0] = "Negative"
|
28 |
+
self.model.config.id2label[1] = "Neutral"
|
29 |
+
self.model.config.id2label[2] = "Positive"
|
30 |
+
self.model.config.label2id["Negative"] = self.model.config.label2id.pop("LABEL_0")
|
31 |
+
self.model.config.label2id["Neutral"] = self.model.config.label2id.pop("LABEL_1")
|
32 |
+
self.model.config.label2id["Positive"] = self.model.config.label2id.pop("LABEL_2")
|
33 |
+
|
34 |
+
# Instantiate explainer
|
35 |
+
self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
|
36 |
+
self.explainer_sp = SequenceClassificationExplainer(self.model_sp, self.tokenizer_sp)
|
37 |
+
|
38 |
+
def justify(self, text, lang):
|
39 |
+
"""
|
40 |
+
Get html annotation for displaying sentiment justification over text.
|
41 |
+
Parameters:
|
42 |
+
text (str): The user input string to sentiment justification
|
43 |
+
Returns:
|
44 |
+
html (hmtl): html object for plotting sentiment prediction justification
|
45 |
+
"""
|
46 |
+
|
47 |
+
if lang == 'es':
|
48 |
+
word_attributions = self.explainer_sp(text)
|
49 |
+
html = self.explainer_sp.visualize("example.html")
|
50 |
+
else:
|
51 |
+
word_attributions = self.explainer(text)
|
52 |
+
html = self.explainer.visualize("example.html")
|
53 |
+
|
54 |
+
return html
|
55 |
+
|
56 |
+
def classify(self, text, lang):
|
57 |
+
"""
|
58 |
+
Recognize Sentiment in text.
|
59 |
+
Parameters:
|
60 |
+
text (str): The user input string to perform sentiment classification on
|
61 |
+
Returns:
|
62 |
+
predictions (str): The predicted probabilities for sentiment classes
|
63 |
+
"""
|
64 |
+
|
65 |
+
if lang == 'es':
|
66 |
+
tokens = self.tokenizer_sp.encode_plus(text, add_special_tokens=False, return_tensors='pt')
|
67 |
+
outputs = self.model_sp(**tokens)
|
68 |
+
probs = torch.nn.functional.softmax(outputs[0], dim=-1)
|
69 |
+
probs = probs.mean(dim=0).detach().numpy()
|
70 |
+
predictions = pd.Series(probs, index=["Negative", "Neutral", "Positive"], name='Predicted Probability')
|
71 |
+
else:
|
72 |
+
tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
|
73 |
+
outputs = self.model(**tokens)
|
74 |
+
probs = torch.nn.functional.softmax(outputs[0], dim=-1)
|
75 |
+
probs = probs.mean(dim=0).detach().numpy()
|
76 |
+
predictions = pd.Series(probs, index=["Negative", "Neutral", "Positive"], name='Predicted Probability')
|
77 |
+
|
78 |
+
return predictions
|
79 |
+
|
80 |
+
def run(self, text, lang):
|
81 |
+
"""
|
82 |
+
Classify and Justify Sentiment in text.
|
83 |
+
Parameters:
|
84 |
+
text (str): The user input string to perform sentiment classification on
|
85 |
+
Returns:
|
86 |
+
predictions (str): The predicted probabilities for sentiment classes
|
87 |
+
html (hmtl): html object for plotting sentiment prediction justification
|
88 |
+
"""
|
89 |
+
|
90 |
+
predictions = self.classify(text, lang)
|
91 |
+
html = self.justify(text, lang)
|
92 |
+
|
93 |
+
return predictions, html
|