Spaces:
Sleeping
Sleeping
import os | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
# Load compressed models from tensorflow_hub | |
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' | |
import matplotlib.pyplot as plt | |
import matplotlib as mpl | |
# For drawing onto the image. | |
import numpy as np | |
from tensorflow.python.ops.numpy_ops import np_config | |
np_config.enable_numpy_behavior() | |
from PIL import Image | |
from PIL import ImageColor | |
from PIL import ImageDraw | |
from PIL import ImageFont | |
import time | |
import streamlit as st | |
# For measuring the inference time. | |
import time | |
class ObjectDetector: | |
def __init__(self): | |
# Load Tokenizer & Model | |
# hub_location = 'cardiffnlp/twitter-roberta-base-sentiment' | |
# self.tokenizer = AutoTokenizer.from_pretrained(hub_location) | |
# self.model = AutoModelForSequenceClassification.from_pretrained(hub_location) | |
# Change model labels in config | |
# self.model.config.id2label[0] = "Negative" | |
# self.model.config.id2label[1] = "Neutral" | |
# self.model.config.id2label[2] = "Positive" | |
# self.model.config.label2id["Negative"] = self.model.config.label2id.pop("LABEL_0") | |
# self.model.config.label2id["Neutral"] = self.model.config.label2id.pop("LABEL_1") | |
# self.model.config.label2id["Positive"] = self.model.config.label2id.pop("LABEL_2") | |
# Instantiate explainer | |
# self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer) | |
# module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1" | |
module_handle = "https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1" | |
self.detector = hub.load(module_handle).signatures['default'] | |
def run_detector(self, path): | |
img = path | |
converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...] | |
start_time = time.time() | |
result = self.detector(converted_img) | |
end_time = time.time() | |
result = {key:value.numpy() for key,value in result.items()} | |
primer = format(result["detection_class_entities"][0]) + ' ' + format(round(result["detection_scores"][0]*100)) + '%' | |
image_with_boxes = self.draw_boxes( | |
img, result["detection_boxes"], | |
result["detection_class_entities"], result["detection_scores"]) | |
# display_image(image_with_boxes) | |
return image_with_boxes, primer | |
def display_image(self, image): | |
fig = plt.figure(figsize=(20, 15)) | |
plt.grid(False) | |
plt.imshow(image) | |
def draw_bounding_box_on_image(self, image, | |
ymin, | |
xmin, | |
ymax, | |
xmax, | |
color, | |
font, | |
thickness=4, | |
display_str_list=()): | |
"""Adds a bounding box to an image.""" | |
draw = ImageDraw.Draw(image) | |
im_width, im_height = image.size | |
(left, right, top, bottom) = (xmin * im_width, xmax * im_width, | |
ymin * im_height, ymax * im_height) | |
draw.line([(left, top), (left, bottom), (right, bottom), (right, top), | |
(left, top)], | |
width=thickness, | |
fill=color) | |
# If the total height of the display strings added to the top of the bounding | |
# box exceeds the top of the image, stack the strings below the bounding box | |
# instead of above. | |
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] | |
# Each display_str has a top and bottom margin of 0.05x. | |
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) | |
if top > total_display_str_height: | |
text_bottom = top | |
else: | |
text_bottom = top + total_display_str_height | |
# Reverse list and print from bottom to top. | |
for display_str in display_str_list[::-1]: | |
text_width, text_height = font.getsize(display_str) | |
margin = np.ceil(0.05 * text_height) | |
draw.rectangle([(left, text_bottom - text_height - 2 * margin), | |
(left + text_width, text_bottom)], | |
fill=color) | |
draw.text((left + margin, text_bottom - text_height - margin), | |
display_str, | |
fill="black", | |
font=font) | |
text_bottom -= text_height - 2 * margin | |
def draw_boxes(self, image, boxes, class_names, scores, max_boxes=10, min_score=0.4): | |
"""Overlay labeled boxes on an image with formatted scores and label names.""" | |
colors = list(ImageColor.colormap.values()) | |
try: | |
font = ImageFont.truetype("./Roboto-Light.ttf", 24) | |
except IOError: | |
print("Font not found, using default font.") | |
font = ImageFont.load_default() | |
for i in range(min(boxes.shape[0], max_boxes)): | |
if scores[i] >= min_score: | |
ymin, xmin, ymax, xmax = tuple(boxes[i]) | |
display_str = "{}: {}%".format(class_names[i].decode("ascii"), | |
int(100 * scores[i])) | |
color = colors[hash(class_names[i]) % len(colors)] | |
image_pil = Image.fromarray(np.uint8(image)).convert("RGB") | |
self.draw_bounding_box_on_image( | |
image_pil, | |
ymin, | |
xmin, | |
ymax, | |
xmax, | |
color, | |
font, | |
display_str_list=[display_str]) | |
np.copyto(image, np.array(image_pil)) | |
return image | |