|
import os |
|
import tensorflow as tf |
|
import tensorflow_hub as hub |
|
|
|
os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED' |
|
|
|
import matplotlib.pyplot as plt |
|
import matplotlib as mpl |
|
|
|
|
|
import numpy as np |
|
from tensorflow.python.ops.numpy_ops import np_config |
|
np_config.enable_numpy_behavior() |
|
from PIL import Image |
|
from PIL import ImageColor |
|
from PIL import ImageDraw |
|
from PIL import ImageFont |
|
import time |
|
|
|
import streamlit as st |
|
|
|
|
|
import time |
|
|
|
|
|
class ObjectDetector: |
|
|
|
def __init__(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module_handle = "https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1" |
|
self.detector = hub.load(module_handle).signatures['default'] |
|
|
|
def run_detector(self, path): |
|
img = path |
|
|
|
converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...] |
|
|
|
start_time = time.time() |
|
result = self.detector(converted_img) |
|
end_time = time.time() |
|
|
|
result = {key:value.numpy() for key,value in result.items()} |
|
|
|
primer = format(result["detection_class_entities"][0]) + ' ' + format(round(result["detection_scores"][0]*100)) + '%' |
|
|
|
image_with_boxes = self.draw_boxes( |
|
img, result["detection_boxes"], |
|
result["detection_class_entities"], result["detection_scores"]) |
|
|
|
|
|
return image_with_boxes, primer |
|
|
|
def display_image(self, image): |
|
fig = plt.figure(figsize=(20, 15)) |
|
plt.grid(False) |
|
plt.imshow(image) |
|
|
|
def draw_bounding_box_on_image(self, image, |
|
ymin, |
|
xmin, |
|
ymax, |
|
xmax, |
|
color, |
|
font, |
|
thickness=4, |
|
display_str_list=()): |
|
"""Adds a bounding box to an image.""" |
|
draw = ImageDraw.Draw(image) |
|
im_width, im_height = image.size |
|
(left, right, top, bottom) = (xmin * im_width, xmax * im_width, |
|
ymin * im_height, ymax * im_height) |
|
draw.line([(left, top), (left, bottom), (right, bottom), (right, top), |
|
(left, top)], |
|
width=thickness, |
|
fill=color) |
|
|
|
|
|
|
|
|
|
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] |
|
|
|
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) |
|
|
|
if top > total_display_str_height: |
|
text_bottom = top |
|
else: |
|
text_bottom = top + total_display_str_height |
|
|
|
for display_str in display_str_list[::-1]: |
|
text_width, text_height = font.getsize(display_str) |
|
margin = np.ceil(0.05 * text_height) |
|
draw.rectangle([(left, text_bottom - text_height - 2 * margin), |
|
(left + text_width, text_bottom)], |
|
fill=color) |
|
draw.text((left + margin, text_bottom - text_height - margin), |
|
display_str, |
|
fill="black", |
|
font=font) |
|
text_bottom -= text_height - 2 * margin |
|
|
|
def draw_boxes(self, image, boxes, class_names, scores, max_boxes=10, min_score=0.4): |
|
"""Overlay labeled boxes on an image with formatted scores and label names.""" |
|
colors = list(ImageColor.colormap.values()) |
|
|
|
try: |
|
font = ImageFont.truetype("./Roboto-Light.ttf", 24) |
|
|
|
except IOError: |
|
print("Font not found, using default font.") |
|
font = ImageFont.load_default() |
|
|
|
for i in range(min(boxes.shape[0], max_boxes)): |
|
if scores[i] >= min_score: |
|
ymin, xmin, ymax, xmax = tuple(boxes[i]) |
|
display_str = "{}: {}%".format(class_names[i].decode("ascii"), |
|
int(100 * scores[i])) |
|
color = colors[hash(class_names[i]) % len(colors)] |
|
image_pil = Image.fromarray(np.uint8(image)).convert("RGB") |
|
self.draw_bounding_box_on_image( |
|
image_pil, |
|
ymin, |
|
xmin, |
|
ymax, |
|
xmax, |
|
color, |
|
font, |
|
display_str_list=[display_str]) |
|
np.copyto(image, np.array(image_pil)) |
|
return image |
|
|
|
|