dperales commited on
Commit
40401c5
1 Parent(s): a83dd2c

Delete app_copy.py

Browse files
Files changed (1) hide show
  1. app_copy.py +0 -160
app_copy.py DELETED
@@ -1,160 +0,0 @@
1
- import os
2
- import pandas as pd
3
- import numpy as np
4
- import matplotlib.pyplot as plt
5
- import matplotlib as mpl
6
- import pycaret
7
- import streamlit as st
8
- from streamlit_option_menu import option_menu
9
- import PIL
10
- from PIL import Image
11
- from PIL import ImageColor
12
- from PIL import ImageDraw
13
- from PIL import ImageFont
14
-
15
- hide_streamlit_style = """
16
- <style>
17
- #MainMenu {visibility: hidden;}
18
- footer {visibility: hidden;}
19
- </style>
20
- """
21
- st.markdown(hide_streamlit_style, unsafe_allow_html=True)
22
-
23
- with st.sidebar:
24
- image = Image.open('./itaca_logo.png')
25
- st.image(image,use_column_width=True)
26
- page = option_menu(menu_title='Menu',
27
- menu_icon="robot",
28
- options=["Clustering Analysis",
29
- "Anomaly Detection"],
30
- icons=["chat-dots",
31
- "key"],
32
- default_index=0
33
- )
34
-
35
- st.title('ITACA Insurance Core AI Module')
36
-
37
- if page == "Clustering Analysis":
38
- st.header('Clustering Analysis')
39
-
40
- st.write(
41
- """
42
- """
43
- )
44
-
45
- # import pycaret unsupervised models
46
- from pycaret.clustering import *
47
- # import ClusteringExperiment
48
- from pycaret.clustering import ClusteringExperiment
49
-
50
- # Upload the CSV file
51
- uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
52
-
53
- # Define the unsupervised model
54
- clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
55
- selected_model = st.selectbox("Choose a clustering model", clusteringmodel)
56
-
57
- # Define the options for the dropdown list
58
- numclusters = [2, 3, 4, 5, 6]
59
- # selected_clusters = st.selectbox("Choose a number of clusters", numclusters)
60
- selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
61
-
62
-
63
- # Read and display the CSV file
64
- if uploaded_file is not None:
65
- try:
66
- delimiter = ','
67
- insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
68
- except ValueError:
69
- delimiter = '|'
70
- insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
71
-
72
- s = setup(insurance_claims, session_id = 123, log_experiment='mlflow', experiment_name='fraud_detection')
73
-
74
- exp_clustering = ClusteringExperiment()
75
-
76
- # init setup on exp
77
- exp_clustering.setup(insurance_claims, session_id = 123)
78
-
79
- if st.button("Prediction"):
80
- with st.spinner("Analyzing..."):
81
- # train kmeans model
82
- cluster_model = create_model(selected_model, num_clusters = selected_clusters)
83
-
84
- cluster_model_2 = assign_model(cluster_model)
85
- cluster_model_2
86
-
87
- all_metrics = get_metrics()
88
- all_metrics
89
-
90
- cluster_results = pull()
91
- cluster_results
92
-
93
- # plot pca cluster plot
94
- plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
95
-
96
- if selected_model != 'ap':
97
- plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
98
-
99
- if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
100
- plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
101
-
102
- if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
103
- plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
104
-
105
- if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
106
- plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
107
-
108
- if selected_model != 'ap':
109
- plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')
110
-
111
- elif page == "Anomaly Detection":
112
- st.header('Anomaly Detection')
113
-
114
- st.write(
115
- """
116
- """
117
- )
118
-
119
- # import pycaret anomaly
120
- from pycaret.anomaly import *
121
- # import AnomalyExperiment
122
- from pycaret.anomaly import AnomalyExperiment
123
-
124
- # Upload the CSV file
125
- uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
126
-
127
- # Define the unsupervised model
128
- anomalymodel = ['abod', 'cluster', 'cof', 'iforest', 'histogram', 'knn', 'lof', 'svm', 'pca', 'mcd', 'sod', 'sos']
129
- selected_model = st.selectbox("Choose an anomaly model", anomalymodel)
130
-
131
- # Read and display the CSV file
132
- if uploaded_file is not None:
133
- try:
134
- delimiter = ','
135
- insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
136
- except ValueError:
137
- delimiter = '|'
138
- insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
139
-
140
- s = setup(insurance_claims, session_id = 123)
141
-
142
- exp_anomaly = AnomalyExperiment()
143
-
144
- # init setup on exp
145
- exp_anomaly.setup(insurance_claims, session_id = 123)
146
-
147
- if st.button("Prediction"):
148
- with st.spinner("Analyzing..."):
149
- # train model
150
- anomaly_model = create_model(selected_model)
151
-
152
- anomaly_model_2 = assign_model(anomaly_model)
153
- anomaly_model_2
154
-
155
- anomaly_results = pull()
156
- anomaly_results
157
-
158
- # plot
159
- plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
160
- plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')