Delete app_copy.py
Browse files- app_copy.py +0 -160
app_copy.py
DELETED
@@ -1,160 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import matplotlib as mpl
|
6 |
-
import pycaret
|
7 |
-
import streamlit as st
|
8 |
-
from streamlit_option_menu import option_menu
|
9 |
-
import PIL
|
10 |
-
from PIL import Image
|
11 |
-
from PIL import ImageColor
|
12 |
-
from PIL import ImageDraw
|
13 |
-
from PIL import ImageFont
|
14 |
-
|
15 |
-
hide_streamlit_style = """
|
16 |
-
<style>
|
17 |
-
#MainMenu {visibility: hidden;}
|
18 |
-
footer {visibility: hidden;}
|
19 |
-
</style>
|
20 |
-
"""
|
21 |
-
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
22 |
-
|
23 |
-
with st.sidebar:
|
24 |
-
image = Image.open('./itaca_logo.png')
|
25 |
-
st.image(image,use_column_width=True)
|
26 |
-
page = option_menu(menu_title='Menu',
|
27 |
-
menu_icon="robot",
|
28 |
-
options=["Clustering Analysis",
|
29 |
-
"Anomaly Detection"],
|
30 |
-
icons=["chat-dots",
|
31 |
-
"key"],
|
32 |
-
default_index=0
|
33 |
-
)
|
34 |
-
|
35 |
-
st.title('ITACA Insurance Core AI Module')
|
36 |
-
|
37 |
-
if page == "Clustering Analysis":
|
38 |
-
st.header('Clustering Analysis')
|
39 |
-
|
40 |
-
st.write(
|
41 |
-
"""
|
42 |
-
"""
|
43 |
-
)
|
44 |
-
|
45 |
-
# import pycaret unsupervised models
|
46 |
-
from pycaret.clustering import *
|
47 |
-
# import ClusteringExperiment
|
48 |
-
from pycaret.clustering import ClusteringExperiment
|
49 |
-
|
50 |
-
# Upload the CSV file
|
51 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
52 |
-
|
53 |
-
# Define the unsupervised model
|
54 |
-
clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
|
55 |
-
selected_model = st.selectbox("Choose a clustering model", clusteringmodel)
|
56 |
-
|
57 |
-
# Define the options for the dropdown list
|
58 |
-
numclusters = [2, 3, 4, 5, 6]
|
59 |
-
# selected_clusters = st.selectbox("Choose a number of clusters", numclusters)
|
60 |
-
selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
|
61 |
-
|
62 |
-
|
63 |
-
# Read and display the CSV file
|
64 |
-
if uploaded_file is not None:
|
65 |
-
try:
|
66 |
-
delimiter = ','
|
67 |
-
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
|
68 |
-
except ValueError:
|
69 |
-
delimiter = '|'
|
70 |
-
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
|
71 |
-
|
72 |
-
s = setup(insurance_claims, session_id = 123, log_experiment='mlflow', experiment_name='fraud_detection')
|
73 |
-
|
74 |
-
exp_clustering = ClusteringExperiment()
|
75 |
-
|
76 |
-
# init setup on exp
|
77 |
-
exp_clustering.setup(insurance_claims, session_id = 123)
|
78 |
-
|
79 |
-
if st.button("Prediction"):
|
80 |
-
with st.spinner("Analyzing..."):
|
81 |
-
# train kmeans model
|
82 |
-
cluster_model = create_model(selected_model, num_clusters = selected_clusters)
|
83 |
-
|
84 |
-
cluster_model_2 = assign_model(cluster_model)
|
85 |
-
cluster_model_2
|
86 |
-
|
87 |
-
all_metrics = get_metrics()
|
88 |
-
all_metrics
|
89 |
-
|
90 |
-
cluster_results = pull()
|
91 |
-
cluster_results
|
92 |
-
|
93 |
-
# plot pca cluster plot
|
94 |
-
plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
|
95 |
-
|
96 |
-
if selected_model != 'ap':
|
97 |
-
plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
|
98 |
-
|
99 |
-
if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
|
100 |
-
plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
|
101 |
-
|
102 |
-
if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
|
103 |
-
plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
|
104 |
-
|
105 |
-
if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
|
106 |
-
plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
|
107 |
-
|
108 |
-
if selected_model != 'ap':
|
109 |
-
plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')
|
110 |
-
|
111 |
-
elif page == "Anomaly Detection":
|
112 |
-
st.header('Anomaly Detection')
|
113 |
-
|
114 |
-
st.write(
|
115 |
-
"""
|
116 |
-
"""
|
117 |
-
)
|
118 |
-
|
119 |
-
# import pycaret anomaly
|
120 |
-
from pycaret.anomaly import *
|
121 |
-
# import AnomalyExperiment
|
122 |
-
from pycaret.anomaly import AnomalyExperiment
|
123 |
-
|
124 |
-
# Upload the CSV file
|
125 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
126 |
-
|
127 |
-
# Define the unsupervised model
|
128 |
-
anomalymodel = ['abod', 'cluster', 'cof', 'iforest', 'histogram', 'knn', 'lof', 'svm', 'pca', 'mcd', 'sod', 'sos']
|
129 |
-
selected_model = st.selectbox("Choose an anomaly model", anomalymodel)
|
130 |
-
|
131 |
-
# Read and display the CSV file
|
132 |
-
if uploaded_file is not None:
|
133 |
-
try:
|
134 |
-
delimiter = ','
|
135 |
-
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
|
136 |
-
except ValueError:
|
137 |
-
delimiter = '|'
|
138 |
-
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
|
139 |
-
|
140 |
-
s = setup(insurance_claims, session_id = 123)
|
141 |
-
|
142 |
-
exp_anomaly = AnomalyExperiment()
|
143 |
-
|
144 |
-
# init setup on exp
|
145 |
-
exp_anomaly.setup(insurance_claims, session_id = 123)
|
146 |
-
|
147 |
-
if st.button("Prediction"):
|
148 |
-
with st.spinner("Analyzing..."):
|
149 |
-
# train model
|
150 |
-
anomaly_model = create_model(selected_model)
|
151 |
-
|
152 |
-
anomaly_model_2 = assign_model(anomaly_model)
|
153 |
-
anomaly_model_2
|
154 |
-
|
155 |
-
anomaly_results = pull()
|
156 |
-
anomaly_results
|
157 |
-
|
158 |
-
# plot
|
159 |
-
plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
|
160 |
-
plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|