Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,158 +1,39 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
|
4 |
-
#
|
5 |
-
|
|
|
|
|
6 |
|
7 |
import matplotlib.pyplot as plt
|
8 |
import matplotlib as mpl
|
9 |
|
10 |
-
# For drawing onto the image.
|
11 |
import numpy as np
|
12 |
-
from tensorflow.python.ops.numpy_ops import np_config
|
13 |
-
np_config.enable_numpy_behavior()
|
14 |
-
from PIL import Image
|
15 |
-
from PIL import ImageColor
|
16 |
-
from PIL import ImageDraw
|
17 |
-
from PIL import ImageFont
|
18 |
-
import time
|
19 |
-
|
20 |
import streamlit as st
|
21 |
|
22 |
# For measuring the inference time.
|
23 |
import time
|
24 |
|
25 |
-
def run_detector(detector, path):
|
26 |
-
# img = load_img_2(path)
|
27 |
-
img = path
|
28 |
-
|
29 |
-
converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...]
|
30 |
-
|
31 |
-
start_time = time.time()
|
32 |
-
result = detector(converted_img)
|
33 |
-
end_time = time.time()
|
34 |
-
|
35 |
-
result = {key:value.numpy() for key,value in result.items()}
|
36 |
-
|
37 |
-
# print("Found %d objects." % len(result["detection_scores"]))
|
38 |
-
# print("Inference time: ", end_time-start_time)
|
39 |
-
|
40 |
-
primer = format(result["detection_class_entities"][0]) + ' ' + format(round(result["detection_scores"][0]*100)) + '%'
|
41 |
-
|
42 |
-
image_with_boxes = draw_boxes(
|
43 |
-
img, result["detection_boxes"],
|
44 |
-
result["detection_class_entities"], result["detection_scores"])
|
45 |
-
|
46 |
-
display_image(image_with_boxes)
|
47 |
-
return image_with_boxes, primer
|
48 |
-
|
49 |
-
def display_image(image):
|
50 |
-
fig = plt.figure(figsize=(20, 15))
|
51 |
-
plt.grid(False)
|
52 |
-
plt.imshow(image)
|
53 |
-
|
54 |
-
def draw_bounding_box_on_image(image,
|
55 |
-
ymin,
|
56 |
-
xmin,
|
57 |
-
ymax,
|
58 |
-
xmax,
|
59 |
-
color,
|
60 |
-
font,
|
61 |
-
thickness=4,
|
62 |
-
display_str_list=()):
|
63 |
-
"""Adds a bounding box to an image."""
|
64 |
-
draw = ImageDraw.Draw(image)
|
65 |
-
im_width, im_height = image.size
|
66 |
-
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
|
67 |
-
ymin * im_height, ymax * im_height)
|
68 |
-
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
|
69 |
-
(left, top)],
|
70 |
-
width=thickness,
|
71 |
-
fill=color)
|
72 |
-
|
73 |
-
# If the total height of the display strings added to the top of the bounding
|
74 |
-
# box exceeds the top of the image, stack the strings below the bounding box
|
75 |
-
# instead of above.
|
76 |
-
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
|
77 |
-
# Each display_str has a top and bottom margin of 0.05x.
|
78 |
-
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
|
79 |
-
|
80 |
-
if top > total_display_str_height:
|
81 |
-
text_bottom = top
|
82 |
-
else:
|
83 |
-
text_bottom = top + total_display_str_height
|
84 |
-
# Reverse list and print from bottom to top.
|
85 |
-
for display_str in display_str_list[::-1]:
|
86 |
-
text_width, text_height = font.getsize(display_str)
|
87 |
-
margin = np.ceil(0.05 * text_height)
|
88 |
-
draw.rectangle([(left, text_bottom - text_height - 2 * margin),
|
89 |
-
(left + text_width, text_bottom)],
|
90 |
-
fill=color)
|
91 |
-
draw.text((left + margin, text_bottom - text_height - margin),
|
92 |
-
display_str,
|
93 |
-
fill="black",
|
94 |
-
font=font)
|
95 |
-
text_bottom -= text_height - 2 * margin
|
96 |
-
|
97 |
-
def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.4):
|
98 |
-
"""Overlay labeled boxes on an image with formatted scores and label names."""
|
99 |
-
colors = list(ImageColor.colormap.values())
|
100 |
-
|
101 |
-
try:
|
102 |
-
font = ImageFont.truetype("./Roboto-Light.ttf", 24)
|
103 |
-
|
104 |
-
except IOError:
|
105 |
-
print("Font not found, using default font.")
|
106 |
-
font = ImageFont.load_default()
|
107 |
-
|
108 |
-
for i in range(min(boxes.shape[0], max_boxes)):
|
109 |
-
if scores[i] >= min_score:
|
110 |
-
ymin, xmin, ymax, xmax = tuple(boxes[i])
|
111 |
-
display_str = "{}: {}%".format(class_names[i].decode("ascii"),
|
112 |
-
int(100 * scores[i]))
|
113 |
-
color = colors[hash(class_names[i]) % len(colors)]
|
114 |
-
image_pil = Image.fromarray(np.uint8(image)).convert("RGB")
|
115 |
-
draw_bounding_box_on_image(
|
116 |
-
image_pil,
|
117 |
-
ymin,
|
118 |
-
xmin,
|
119 |
-
ymax,
|
120 |
-
xmax,
|
121 |
-
color,
|
122 |
-
font,
|
123 |
-
display_str_list=[display_str])
|
124 |
-
np.copyto(image, np.array(image_pil))
|
125 |
-
return image
|
126 |
-
|
127 |
def main():
|
128 |
-
|
129 |
-
|
130 |
-
st.image(image,use_column_width=False)
|
131 |
-
# st.sidebar.info('This app is created to detect objects in a picture')
|
132 |
-
# st.sidebar.image(image_hospital)
|
133 |
-
# st.sidebar.success('https://www.ust.com')
|
134 |
-
st.title("Object Detector :sunglasses:")
|
135 |
|
136 |
-
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
image = np.array(Image.open(img_file_buffer))
|
141 |
-
# st.image(image, caption="Imagen", use_column_width=True)
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
147 |
|
148 |
if st.button("Prediction"):
|
149 |
-
#
|
150 |
-
|
151 |
-
# primero = run_detector(detector, image)
|
152 |
-
st.success('The first image detected is: ' + primero)
|
153 |
-
st.image(img, caption="Imagen", use_column_width=True)
|
154 |
|
155 |
|
156 |
-
|
157 |
if __name__ == '__main__':
|
158 |
main()
|
|
|
1 |
import os
|
2 |
+
import pycaret
|
3 |
+
from pycaret.datasets import get_data
|
4 |
+
# import pycaret clustering and init setup
|
5 |
+
from pycaret.clustering import *
|
6 |
+
# import ClusteringExperiment and init the class
|
7 |
+
from pycaret.clustering import ClusteringExperiment
|
8 |
|
9 |
import matplotlib.pyplot as plt
|
10 |
import matplotlib as mpl
|
11 |
|
|
|
12 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
import streamlit as st
|
14 |
|
15 |
# For measuring the inference time.
|
16 |
import time
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def main():
|
19 |
+
data = get_data('jewellery')
|
20 |
+
s = setup(data, session_id = 123)
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
exp = ClusteringExperiment()
|
23 |
|
24 |
+
# init setup on exp
|
25 |
+
exp.setup(data, session_id = 123)
|
|
|
|
|
26 |
|
27 |
+
# train kmeans model
|
28 |
+
kmeans = create_model('kmeans')
|
29 |
+
|
30 |
+
kmeans_cluster = assign_model(kmeans)
|
31 |
+
kmeans_cluster
|
32 |
|
33 |
if st.button("Prediction"):
|
34 |
+
# plot pca cluster plot
|
35 |
+
plot_model(kmeans, plot = 'cluster')
|
|
|
|
|
|
|
36 |
|
37 |
|
|
|
38 |
if __name__ == '__main__':
|
39 |
main()
|