dperales commited on
Commit
c34d8f1
1 Parent(s): 32d7502

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -137
app.py CHANGED
@@ -1,158 +1,39 @@
1
  import os
2
- import tensorflow as tf
3
- import tensorflow_hub as hub
4
- # Load compressed models from tensorflow_hub
5
- os.environ['TFHUB_MODEL_LOAD_FORMAT'] = 'COMPRESSED'
 
 
6
 
7
  import matplotlib.pyplot as plt
8
  import matplotlib as mpl
9
 
10
- # For drawing onto the image.
11
  import numpy as np
12
- from tensorflow.python.ops.numpy_ops import np_config
13
- np_config.enable_numpy_behavior()
14
- from PIL import Image
15
- from PIL import ImageColor
16
- from PIL import ImageDraw
17
- from PIL import ImageFont
18
- import time
19
-
20
  import streamlit as st
21
 
22
  # For measuring the inference time.
23
  import time
24
 
25
- def run_detector(detector, path):
26
- # img = load_img_2(path)
27
- img = path
28
-
29
- converted_img = tf.image.convert_image_dtype(img, tf.float32)[tf.newaxis, ...]
30
-
31
- start_time = time.time()
32
- result = detector(converted_img)
33
- end_time = time.time()
34
-
35
- result = {key:value.numpy() for key,value in result.items()}
36
-
37
- # print("Found %d objects." % len(result["detection_scores"]))
38
- # print("Inference time: ", end_time-start_time)
39
-
40
- primer = format(result["detection_class_entities"][0]) + ' ' + format(round(result["detection_scores"][0]*100)) + '%'
41
-
42
- image_with_boxes = draw_boxes(
43
- img, result["detection_boxes"],
44
- result["detection_class_entities"], result["detection_scores"])
45
-
46
- display_image(image_with_boxes)
47
- return image_with_boxes, primer
48
-
49
- def display_image(image):
50
- fig = plt.figure(figsize=(20, 15))
51
- plt.grid(False)
52
- plt.imshow(image)
53
-
54
- def draw_bounding_box_on_image(image,
55
- ymin,
56
- xmin,
57
- ymax,
58
- xmax,
59
- color,
60
- font,
61
- thickness=4,
62
- display_str_list=()):
63
- """Adds a bounding box to an image."""
64
- draw = ImageDraw.Draw(image)
65
- im_width, im_height = image.size
66
- (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
67
- ymin * im_height, ymax * im_height)
68
- draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
69
- (left, top)],
70
- width=thickness,
71
- fill=color)
72
-
73
- # If the total height of the display strings added to the top of the bounding
74
- # box exceeds the top of the image, stack the strings below the bounding box
75
- # instead of above.
76
- display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
77
- # Each display_str has a top and bottom margin of 0.05x.
78
- total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
79
-
80
- if top > total_display_str_height:
81
- text_bottom = top
82
- else:
83
- text_bottom = top + total_display_str_height
84
- # Reverse list and print from bottom to top.
85
- for display_str in display_str_list[::-1]:
86
- text_width, text_height = font.getsize(display_str)
87
- margin = np.ceil(0.05 * text_height)
88
- draw.rectangle([(left, text_bottom - text_height - 2 * margin),
89
- (left + text_width, text_bottom)],
90
- fill=color)
91
- draw.text((left + margin, text_bottom - text_height - margin),
92
- display_str,
93
- fill="black",
94
- font=font)
95
- text_bottom -= text_height - 2 * margin
96
-
97
- def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.4):
98
- """Overlay labeled boxes on an image with formatted scores and label names."""
99
- colors = list(ImageColor.colormap.values())
100
-
101
- try:
102
- font = ImageFont.truetype("./Roboto-Light.ttf", 24)
103
-
104
- except IOError:
105
- print("Font not found, using default font.")
106
- font = ImageFont.load_default()
107
-
108
- for i in range(min(boxes.shape[0], max_boxes)):
109
- if scores[i] >= min_score:
110
- ymin, xmin, ymax, xmax = tuple(boxes[i])
111
- display_str = "{}: {}%".format(class_names[i].decode("ascii"),
112
- int(100 * scores[i]))
113
- color = colors[hash(class_names[i]) % len(colors)]
114
- image_pil = Image.fromarray(np.uint8(image)).convert("RGB")
115
- draw_bounding_box_on_image(
116
- image_pil,
117
- ymin,
118
- xmin,
119
- ymax,
120
- xmax,
121
- color,
122
- font,
123
- display_str_list=[display_str])
124
- np.copyto(image, np.array(image_pil))
125
- return image
126
-
127
  def main():
128
- image = Image.open('./itaca_logo_2.png')
129
- # image_hospital = Image.open('./ust.png')
130
- st.image(image,use_column_width=False)
131
- # st.sidebar.info('This app is created to detect objects in a picture')
132
- # st.sidebar.image(image_hospital)
133
- # st.sidebar.success('https://www.ust.com')
134
- st.title("Object Detector :sunglasses:")
135
 
136
- # filename = file_selector(FILE_PATH)
137
 
138
- img_file_buffer = st.file_uploader("Carga una imagen", type=["png", "jpg", "jpeg"])
139
- if img_file_buffer is not None:
140
- image = np.array(Image.open(img_file_buffer))
141
- # st.image(image, caption="Imagen", use_column_width=True)
142
 
143
- module_handle = "https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1"
144
- # module_handle = "https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1"
145
-
146
- detector = hub.load(module_handle).signatures['default']
 
147
 
148
  if st.button("Prediction"):
149
- # img, primero = run_detector(detector, filename)
150
- img, primero = run_detector(detector, image)
151
- # primero = run_detector(detector, image)
152
- st.success('The first image detected is: ' + primero)
153
- st.image(img, caption="Imagen", use_column_width=True)
154
 
155
 
156
-
157
  if __name__ == '__main__':
158
  main()
 
1
  import os
2
+ import pycaret
3
+ from pycaret.datasets import get_data
4
+ # import pycaret clustering and init setup
5
+ from pycaret.clustering import *
6
+ # import ClusteringExperiment and init the class
7
+ from pycaret.clustering import ClusteringExperiment
8
 
9
  import matplotlib.pyplot as plt
10
  import matplotlib as mpl
11
 
 
12
  import numpy as np
 
 
 
 
 
 
 
 
13
  import streamlit as st
14
 
15
  # For measuring the inference time.
16
  import time
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  def main():
19
+ data = get_data('jewellery')
20
+ s = setup(data, session_id = 123)
 
 
 
 
 
21
 
22
+ exp = ClusteringExperiment()
23
 
24
+ # init setup on exp
25
+ exp.setup(data, session_id = 123)
 
 
26
 
27
+ # train kmeans model
28
+ kmeans = create_model('kmeans')
29
+
30
+ kmeans_cluster = assign_model(kmeans)
31
+ kmeans_cluster
32
 
33
  if st.button("Prediction"):
34
+ # plot pca cluster plot
35
+ plot_model(kmeans, plot = 'cluster')
 
 
 
36
 
37
 
 
38
  if __name__ == '__main__':
39
  main()