dperales's picture
Update app.py
8c582a1
raw
history blame
16.4 kB
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
import pycaret
import streamlit as st
from streamlit_option_menu import option_menu
import PIL
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont
def main():
st.set_page_config(layout="wide")
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.sidebar:
image = Image.open('itaca_logo.png')
st.image(image, width=150) #,use_column_width=True)
page = option_menu(menu_title='Menu',
menu_icon="robot",
options=["Clustering Analysis",
"Anomaly Detection"],
icons=["chat-dots",
"key"],
default_index=0
)
# Additional section below the option menu
# st.markdown("---") # Add a separator line
st.header("Settings")
num_lines = st.number_input("% of lines to be processed:", min_value=0, max_value=100, value=100)
graph_select = st.checkbox("Show Graphics", value= True)
feat_imp_select = st.checkbox("Feature Importance", value= False)
# Define the options for the dropdown list
numclusters = [2, 3, 4, 5, 6]
selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
p_remove_multicollinearity = st.checkbox("Remove Multicollinearity", value=False)
p_multicollinearity_threshold = st.slider("Choose multicollinearity thresholds", min_value=0.0, max_value=1.0, value=0.9)
# p_remove_outliers = st.checkbox("Remove Outliers", value=False)
# p_outliers_method = st.selectbox ("Choose an Outlier Method", ["iforest", "ee", "lof"])
p_transformation = st.checkbox("Choose Power Transform", value = False)
p_normalize = st.checkbox("Choose Normalize", value = False)
p_pca = st.checkbox("Choose PCA", value = False)
p_pca_method = st.selectbox ("Choose a PCA Method", ["linear", "kernel", "incremental"])
st.title('ITACA Insurance Core AI Module')
#col1, col2 = st.columns(2)
if page == "Clustering Analysis":
#with col1:
st.header('Clustering Analysis')
st.write(
"""
"""
)
# import pycaret unsupervised models
from pycaret.clustering import setup, create_model, assign_model, pull, plot_model
# import ClusteringExperiment
from pycaret.clustering import ClusteringExperiment
# Display the list of CSV files
directory = "./"
all_files = os.listdir(directory)
# Filter files to only include CSV files
csv_files = [file for file in all_files if file.endswith(".csv")]
# Select a CSV file from the list
selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
# Upload the CSV file
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
# Define the unsupervised model
clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
selected_model = st.selectbox("Choose a clustering model", clusteringmodel)
# Read and display the CSV file
if selected_csv != "None" or uploaded_file is not None:
if uploaded_file:
try:
delimiter = ','
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
except ValueError:
delimiter = '|'
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
else:
insurance_claims = pd.read_csv(selected_csv)
num_rows = int(insurance_claims.shape[0]*(num_lines)/100)
insurance_claims_reduced = insurance_claims.head(num_rows)
st.write("Rows to be processed: " + str(num_rows))
all_columns = insurance_claims_reduced.columns.tolist()
selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
insurance_claims_reduced = insurance_claims_reduced[selected_columns].copy()
with st.expander("Inference Description", expanded=True):
insurance_claims_reduced.describe().T
with st.expander("Head Map", expanded=True):
cat_col = insurance_claims_reduced.select_dtypes(include=['object']).columns
num_col = insurance_claims_reduced.select_dtypes(exclude=['object']).columns
# insurance_claims[num_col].hist(bins=15, figsize=(20, 15), layout=(5, 4))
# Calculate the correlation matrix
corr_matrix = insurance_claims_reduced[num_col].corr()
# Create a Matplotlib figure
fig, ax = plt.subplots(figsize=(12, 8))
# Create a heatmap using seaborn
#st.header("Heat Map")
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
# Set the title for the heatmap
ax.set_title('Correlation Heatmap')
# Display the heatmap in Streamlit
st.pyplot(fig)
if st.button("Prediction"):
#insurance_claims_reduced = insurance_claims_reduced[selected_columns].copy()
s = setup(insurance_claims_reduced, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
# remove_outliers=p_remove_outliers, outliers_method=p_outliers_method,
transformation=p_transformation,
normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
exp_clustering = ClusteringExperiment()
# init setup on exp
exp_clustering.setup(insurance_claims_reduced, session_id = 123)
with st.spinner("Analyzing..."):
#with col2:
#st.markdown("<br><br><br><br>", unsafe_allow_html=True)
# train kmeans model
cluster_model = create_model(selected_model, num_clusters = selected_clusters)
cluster_model_2 = assign_model(cluster_model)
# Calculate summary statistics for each cluster
cluster_summary = cluster_model_2.groupby('Cluster').agg(['count', 'mean', 'median', 'min', 'max',
'std', 'var', 'sum', ('quantile_25', lambda x: x.quantile(0.25)),
('quantile_75', lambda x: x.quantile(0.75)), 'skew'])
with st.expander("Cluster Summary", expanded=False):
#st.header("Cluster Summary")
cluster_summary
with st.expander("Model Assign", expanded=False):
#st.header("Assign Model")
cluster_model_2
# all_metrics = get_metrics()
# all_metrics
with st.expander("Clustering Metrics", expanded=False):
#st.header("Clustering Metrics")
cluster_results = pull()
cluster_results
with st.expander("Clustering Plots", expanded=False):
if graph_select:
#st.header("Clustering Plots")
# plot pca cluster plot
plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
if selected_model != 'ap':
plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
if selected_model != 'ap':
plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')
with st.expander("Feature Importance", expanded=False):
# Create a Classification Model to extract feature importance
if graph_select and feat_imp_select:
#st.header("Feature Importance")
from pycaret.classification import setup, create_model, get_config
s = setup(cluster_model_2, target = 'Cluster')
lr = create_model('lr')
# this is how you can recreate the table
feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
# sort by feature importance value and filter top 10
feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
# Display the filtered table in Streamlit
# st.dataframe(feat_imp)
# Display the filtered table as a bar chart in Streamlit
st.bar_chart(feat_imp.set_index('Feature'))
elif page == "Anomaly Detection":
#with col1:
st.header('Anomaly Detection')
st.write(
"""
"""
)
# import pycaret anomaly
from pycaret.anomaly import setup, create_model, assign_model, pull, plot_model
# import AnomalyExperiment
from pycaret.anomaly import AnomalyExperiment
# Display the list of CSV files
directory = "./"
all_files = os.listdir(directory)
# Filter files to only include CSV files
csv_files = [file for file in all_files if file.endswith(".csv")]
# Select a CSV file from the list
selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
# Upload the CSV file
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
# Define the unsupervised model
anomalymodel = ['abod', 'cluster', 'cof', 'iforest', 'histogram', 'knn', 'lof', 'svm', 'pca', 'mcd', 'sod', 'sos']
selected_model = st.selectbox("Choose an anomaly model", anomalymodel)
# Read and display the CSV file
if selected_csv != "None" or uploaded_file is not None:
if uploaded_file:
try:
delimiter = ','
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
except ValueError:
delimiter = '|'
insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
else:
insurance_claims = pd.read_csv(selected_csv)
num_rows = int(insurance_claims.shape[0]*(num_lines)/100)
insurance_claims_reduced = insurance_claims.head(num_rows)
st.write("Rows to be processed: " + str(num_rows))
all_columns = insurance_claims_reduced.columns.tolist()
selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
insurance_claims_reduced = insurance_claims_reduced[selected_columns].copy()
with st.expander("Inference Description", expanded=True):
insurance_claims_reduced.describe().T
with st.expander("Head Map", expanded=True):
cat_col = insurance_claims_reduced.select_dtypes(include=['object']).columns
num_col = insurance_claims_reduced.select_dtypes(exclude=['object']).columns
# insurance_claims[num_col].hist(bins=15, figsize=(20, 15), layout=(5, 4))
# Calculate the correlation matrix
corr_matrix = insurance_claims_reduced[num_col].corr()
# Create a Matplotlib figure
fig, ax = plt.subplots(figsize=(12, 8))
# Create a heatmap using seaborn
#st.header("Heat Map")
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
# Set the title for the heatmap
ax.set_title('Correlation Heatmap')
# Display the heatmap in Streamlit
st.pyplot(fig)
if st.button("Prediction"):
s = setup(insurance_claims_reduced, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
# remove_outliers=p_remove_outliers, outliers_method=p_outliers_method,
transformation=p_transformation,
normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
exp_anomaly = AnomalyExperiment()
# init setup on exp
exp_anomaly.setup(insurance_claims_reduced, session_id = 123)
with st.spinner("Analyzing..."):
#with col2:
#st.markdown("<br><br><br><br>", unsafe_allow_html=True)
# train model
anomaly_model = create_model(selected_model)
with st.expander("Assign Model", expanded=False):
#st.header("Assign Model")
anomaly_model_2 = assign_model(anomaly_model)
anomaly_model_2
with st.expander("Anomaly Metrics", expanded=False):
#st.header("Anomaly Metrics")
anomaly_results = pull()
anomaly_results
with st.expander("Anomaly Plots", expanded=False):
if graph_select:
# plot
#st.header("Anomaly Plots")
plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')
with st.expander("Feature Importance", expanded=False):
if graph_select and feat_imp_select:
# Create a Classification Model to extract feature importance
#st.header("Feature Importance")
from pycaret.classification import setup, create_model, get_config
s = setup(anomaly_model_2, target = 'Anomaly')
lr = create_model('lr')
# this is how you can recreate the table
feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
# sort by feature importance value and filter top 10
feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
# Display the filtered table in Streamlit
# st.dataframe(feat_imp)
# Display the filtered table as a bar chart in Streamlit
st.bar_chart(feat_imp.set_index('Feature'))
try:
main()
except Exception as e:
st.sidebar.error(f"An error occurred: {e}")