Spaces:
Configuration error
Configuration error
Danila-Pechenev
commited on
Commit
·
ffe582f
1
Parent(s):
cf23f59
Implement application
Browse files- app/main.py +42 -0
- app/model.py +30 -0
app/main.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from tensorflow import keras
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
|
6 |
+
import model
|
7 |
+
|
8 |
+
|
9 |
+
def configure():
|
10 |
+
st.set_page_config(page_title="Low-light image enhancement")
|
11 |
+
if "model" not in st.session_state:
|
12 |
+
st.session_state["model"]: keras.Model = model.create_model()
|
13 |
+
|
14 |
+
|
15 |
+
def describe_service():
|
16 |
+
st.title("Low-light image enhancement")
|
17 |
+
st.subheader("Just upload your low-light image and get the processed one!")
|
18 |
+
|
19 |
+
|
20 |
+
def process_image():
|
21 |
+
uploaded_file: io.BytesIO = st.file_uploader(
|
22 |
+
label="Choose a file (you can upload new files without refreshing the page)",
|
23 |
+
type=["png", "jpg", "jpeg"],
|
24 |
+
)
|
25 |
+
if uploaded_file:
|
26 |
+
placeholder: st.delta_generator.DeltaGenerator = st.empty()
|
27 |
+
placeholder.info(
|
28 |
+
"The image is being processed. It may take some time. Wait, please..."
|
29 |
+
)
|
30 |
+
image: Image.Image = model.run_model(uploaded_file, st.session_state["model"])
|
31 |
+
placeholder.empty()
|
32 |
+
placeholder.image(image)
|
33 |
+
|
34 |
+
|
35 |
+
def main():
|
36 |
+
describe_service()
|
37 |
+
process_image()
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
configure()
|
42 |
+
main()
|
app/model.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow import keras
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import io
|
5 |
+
|
6 |
+
|
7 |
+
def create_model() -> keras.Model:
|
8 |
+
return keras.models.load_model("model")
|
9 |
+
|
10 |
+
|
11 |
+
def run_model(image: io.BytesIO, model: keras.Model) -> Image.Image:
|
12 |
+
image: Image.Image = Image.open(image)
|
13 |
+
width: int = image.size[0]
|
14 |
+
height: int = image.size[1]
|
15 |
+
image: Image.Image = image.resize((960, 640))
|
16 |
+
image: np.ndarray = keras.utils.img_to_array(image)
|
17 |
+
image: np.ndarray = image.astype("float32") / 255.0
|
18 |
+
image: np.ndarray = np.expand_dims(image, axis=0)
|
19 |
+
output: np.ndarray = model.predict(image)
|
20 |
+
output_image: np.ndarray = output[0] * 255.0
|
21 |
+
output_image: np.ndarray = output_image.clip(0, 255)
|
22 |
+
output_image: np.ndarray = output_image.reshape(
|
23 |
+
(np.shape(output_image)[0], np.shape(output_image)[1], 3)
|
24 |
+
)
|
25 |
+
output_image: np.ndarray = np.uint32(output_image)
|
26 |
+
output_image: np.ndarray = output_image.astype(np.uint8)
|
27 |
+
output_image: Image.Image = Image.fromarray(output_image)
|
28 |
+
output_image: Image.Image = output_image.resize((width, height))
|
29 |
+
output_image.save("user_data/output.jpg")
|
30 |
+
return output_image
|