Spaces:
Configuration error
Configuration error
Danila-Pechenev
commited on
Commit
·
ea7c504
1
Parent(s):
78f871e
Clean code
Browse files- app/main.py +1 -3
- app/model.py +16 -15
app/main.py
CHANGED
@@ -24,9 +24,7 @@ def process_image():
|
|
24 |
)
|
25 |
if uploaded_file:
|
26 |
placeholder: st.delta_generator.DeltaGenerator = st.empty()
|
27 |
-
placeholder.info(
|
28 |
-
"The image is being processed. It may take some time. Wait, please..."
|
29 |
-
)
|
30 |
image: Image.Image = model.run_model(uploaded_file, st.session_state["model"])
|
31 |
placeholder.empty()
|
32 |
placeholder.image(image)
|
|
|
24 |
)
|
25 |
if uploaded_file:
|
26 |
placeholder: st.delta_generator.DeltaGenerator = st.empty()
|
27 |
+
placeholder.info("The image is being processed. It may take some time. Wait, please...")
|
|
|
|
|
28 |
image: Image.Image = model.run_model(uploaded_file, st.session_state["model"])
|
29 |
placeholder.empty()
|
30 |
placeholder.image(image)
|
app/model.py
CHANGED
@@ -9,23 +9,24 @@ def create_model() -> keras.Model:
|
|
9 |
return from_pretrained_keras("keras-io/lowlight-enhance-mirnet")
|
10 |
|
11 |
|
12 |
-
def run_model(
|
13 |
-
image: Image.Image = Image.open(
|
14 |
-
width: int
|
15 |
-
height: int
|
|
|
16 |
image: Image.Image = image.resize((960, 640))
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
output: np.ndarray = model.predict(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
(np.shape(
|
25 |
)
|
26 |
-
|
27 |
-
|
28 |
-
output_image: Image.Image = Image.fromarray(
|
29 |
output_image: Image.Image = output_image.resize((width, height))
|
30 |
output_image.save("user_data/output.jpg")
|
31 |
return output_image
|
|
|
9 |
return from_pretrained_keras("keras-io/lowlight-enhance-mirnet")
|
10 |
|
11 |
|
12 |
+
def run_model(image_bytes: io.BytesIO, model: keras.Model) -> Image.Image:
|
13 |
+
image: Image.Image = Image.open(image_bytes)
|
14 |
+
width: int
|
15 |
+
height: int
|
16 |
+
width, height = image.size
|
17 |
image: Image.Image = image.resize((960, 640))
|
18 |
+
image_array: np.ndarray = keras.utils.img_to_array(image)
|
19 |
+
image_array: np.ndarray = image_array.astype("float32") / 255.0
|
20 |
+
image_array: np.ndarray = np.expand_dims(image_array, axis=0)
|
21 |
+
output: np.ndarray = model.predict(image_array)
|
22 |
+
output_image_array: np.ndarray = output[0] * 255.0
|
23 |
+
output_image_array: np.ndarray = output_image_array.clip(0, 255)
|
24 |
+
output_image_array: np.ndarray = output_image_array.reshape(
|
25 |
+
(np.shape(output_image_array)[0], np.shape(output_image_array)[1], 3)
|
26 |
)
|
27 |
+
output_image_array: np.ndarray = np.uint32(output_image_array)
|
28 |
+
output_image_array: np.ndarray = output_image_array.astype(np.uint8)
|
29 |
+
output_image: Image.Image = Image.fromarray(output_image_array)
|
30 |
output_image: Image.Image = output_image.resize((width, height))
|
31 |
output_image.save("user_data/output.jpg")
|
32 |
return output_image
|