Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import pipeline | |
| pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto") | |
| messages = [ | |
| { | |
| "role": "system", | |
| "content": "You are a friendly chatbot who always responds in the style of a pirate", | |
| }, | |
| # {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, | |
| ] | |
| def chat_response(message, history): | |
| msg = messages.copy() | |
| for m in history: | |
| q, a = m | |
| msg.append({"role": "user", "content": q}) | |
| msg.append({"role": "assistant", "content": a}) | |
| msg.append({"role": "user", "content": message}) | |
| prompt = pipe.tokenizer.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) | |
| outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
| output = outputs[0]["generated_text"] | |
| messages.append({"role": "assistant", "content": output}) | |
| response_start = output.rfind('<|assistant|>') | |
| return output[response_start + len('<|assistant|>'):] | |
| demo = gr.ChatInterface(chat_response) | |
| demo.launch() | |