Spaces:
Runtime error
Runtime error
| import os | |
| from flask import Flask, request, jsonify, send_file | |
| from flask_cors import CORS | |
| from diffusers import AutoPipelineForImage2Image | |
| from diffusers.utils import make_image_grid | |
| from PIL import Image | |
| import torch | |
| import io | |
| import base64 | |
| # Set environment variable to avoid fragmentation | |
| os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' | |
| # Clear any unused GPU memory | |
| torch.cuda.empty_cache() | |
| app = Flask(__name__) | |
| CORS(app) | |
| # Load the image-to-image pipeline from Hugging Face | |
| pipe = AutoPipelineForImage2Image.from_pretrained("RunDiffusion/Juggernaut-X-v10", torch_dtype=torch.float16).to("cuda") | |
| pipe.enable_xformers_memory_efficient_attention() | |
| pipe.enable_vae_tiling() # Improve performance on large images | |
| pipe.enable_vae_slicing() # Improve performance on large batches | |
| print('loaded models...') | |
| def hello(): | |
| return {"Goes Wrong": "Keeping it real"} | |
| def run_inference(): | |
| data = request.get_json() | |
| if 'base64_image' not in data: | |
| return jsonify({"error": "No base64 image data provided"}), 400 | |
| base64_image = data['base64_image'] | |
| prompt = data.get('prompt', 'fleece hoodie, front zip, abstract pattern, GAP logo, high quality, photo') | |
| negative_prompt = data.get('negative_prompt', 'low quality, bad quality, sketches, hanger') | |
| guidance_scale = float(data.get('guidance_scale', 7)) | |
| num_images = int(data.get('num_images', 2)) | |
| # Decode the base64 image | |
| image_data = base64.b64decode(base64_image) | |
| sketch = Image.open(io.BytesIO(image_data)) | |
| with torch.inference_mode(): | |
| images = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=sketch, | |
| num_inference_steps=35, | |
| guidance_scale=guidance_scale, | |
| strength=0.5, | |
| generator=torch.manual_seed(69), | |
| num_images_per_prompt=num_images, | |
| ).images | |
| grid = make_image_grid(images, rows=1, cols=num_images) | |
| # Save the generated grid to a BytesIO object | |
| img_byte_arr = io.BytesIO() | |
| grid.save(img_byte_arr, format='PNG') | |
| img_byte_arr.seek(0) | |
| return send_file(img_byte_arr, mimetype='image/png') | |
| if __name__ == '__main__': | |
| app.run(debug=True) | |