Spaces:
Running
Running
import gradio as gr | |
import torch | |
from PIL import Image | |
from donut import DonutModel | |
def demo_process(input_img): | |
global pretrained_model, task_prompt, task_name | |
# input_img = Image.fromarray(input_img) | |
output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0] | |
return output | |
task_name = "preparedFinetuneData" | |
# task_name = "cord-v2" | |
task_prompt = f"<s_{task_name}>" | |
image = Image.open("preparedFinetuneData/test/100.jpg") | |
image.save("sample_receipt1.png") | |
image = Image.open("preparedFinetuneData/test/101.jpg") | |
image.save("sample_receipt2.png") | |
PATH = 'epochs30_base_on_donut_base/' | |
# pretrained_model = DonutModel.from_pretrained(PATH, local_files_only=True) | |
# pretrained_model = DonutModel.from_pretrained("doshan1250/p9OcrAiV1", revision="main") | |
pretrained_model = DonutModel.from_pretrained("doshan1250/p9OcrAiV1") | |
# pretrained_model = DonutModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") | |
pretrained_model.eval() | |
demo = gr.Interface( | |
fn=demo_process, | |
inputs= gr.Image(type="pil"), | |
outputs="json", | |
title=f"Donut 🍩 demonstration for `{task_name}` task", | |
description="""Goodarc p9 使用 100 個英文收據訓練. <br>""", | |
examples=[["sample_receipt1.png"], ["sample_receipt2.png"]], | |
cache_examples=False, | |
) | |
demo.launch() |