Spaces:
Sleeping
Sleeping
import torch | |
from PIL import Image | |
from torchvision import transforms | |
from architecture import ResNetLungCancer | |
import gradio as gr | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model = ResNetLungCancer(num_classes=4) | |
model.load_state_dict(torch.load('lung_cancer_detection_model.pth', map_location=device)) | |
model = model.to(device) | |
model.eval() | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
class_names = ['Adenocarcinoma', 'Large Cell Carcinoma', 'Normal', 'Squamous Cell Carcinoma'] | |
def predict(image): | |
image = Image.fromarray(image.astype('uint8'), 'RGB') | |
input_tensor = preprocess(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
output = model(input_tensor) | |
predicted_class = torch.argmax(output, dim=1).item() | |
return class_names[predicted_class] | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(), | |
outputs=gr.Label(num_top_classes=1), | |
examples=[ | |
["Data/test/large.cell.carcinoma/000108.png"], | |
["Data/test/normal/7 - Copy (3).png"] | |
] | |
) | |
iface.launch() |