|
import logging |
|
from pathlib import Path |
|
|
|
import torch |
|
from peft import PeftModel |
|
|
|
import modules.shared as shared |
|
|
|
|
|
def add_lora_to_model(lora_names): |
|
prior_set = set(shared.lora_names) |
|
added_set = set(lora_names) - prior_set |
|
removed_set = prior_set - set(lora_names) |
|
shared.lora_names = list(lora_names) |
|
|
|
|
|
if len(added_set) == 0 and len(removed_set) == 0: |
|
return |
|
|
|
|
|
if len(removed_set) == 0 and len(prior_set) > 0: |
|
logging.info(f"Adding the LoRA(s) named {added_set} to the model...") |
|
for lora in added_set: |
|
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora) |
|
|
|
return |
|
|
|
|
|
if len(removed_set) > 0: |
|
shared.model.disable_adapter() |
|
|
|
if len(lora_names) > 0: |
|
logging.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names))) |
|
params = {} |
|
if not shared.args.cpu: |
|
params['dtype'] = shared.model.dtype |
|
if hasattr(shared.model, "hf_device_map"): |
|
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()} |
|
elif shared.args.load_in_8bit: |
|
params['device_map'] = {'': 0} |
|
|
|
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), **params) |
|
|
|
for lora in lora_names[1:]: |
|
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora) |
|
|
|
if not shared.args.load_in_8bit and not shared.args.cpu: |
|
shared.model.half() |
|
if not hasattr(shared.model, "hf_device_map"): |
|
if torch.has_mps: |
|
device = torch.device('mps') |
|
shared.model = shared.model.to(device) |
|
else: |
|
shared.model = shared.model.cuda() |
|
|