Spaces:
Runtime error
Runtime error
import gc | |
import json | |
import logging | |
import os | |
import re | |
import time | |
import zipfile | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import transformers | |
from accelerate import infer_auto_device_map, init_empty_weights | |
from transformers import (AutoConfig, AutoModel, AutoModelForCausalLM, | |
AutoModelForSeq2SeqLM, AutoTokenizer, | |
BitsAndBytesConfig, LlamaTokenizer) | |
import modules.shared as shared | |
from modules import llama_attn_hijack | |
transformers.logging.set_verbosity_error() | |
local_rank = None | |
if shared.args.deepspeed: | |
import deepspeed | |
from transformers.deepspeed import (HfDeepSpeedConfig, | |
is_deepspeed_zero3_enabled) | |
from modules.deepspeed_parameters import generate_ds_config | |
# Distributed setup | |
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0")) | |
world_size = int(os.getenv("WORLD_SIZE", "1")) | |
torch.cuda.set_device(local_rank) | |
deepspeed.init_distributed() | |
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir) | |
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration | |
# Some models require special treatment in various parts of the code. | |
# This function detects those models | |
def find_model_type(model_name): | |
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') | |
if not path_to_model.exists(): | |
return 'None' | |
model_name_lower = model_name.lower() | |
if 'rwkv-' in model_name_lower: | |
return 'rwkv' | |
elif len(list(path_to_model.glob('*ggml*.bin'))) > 0: | |
return 'llamacpp' | |
elif re.match('.*ggml.*\.bin', model_name_lower): | |
return 'llamacpp' | |
elif 'chatglm' in model_name_lower: | |
return 'chatglm' | |
elif 'galactica' in model_name_lower: | |
return 'galactica' | |
elif 'llava' in model_name_lower: | |
return 'llava' | |
elif 'oasst' in model_name_lower: | |
return 'oasst' | |
elif any((k in model_name_lower for k in ['gpt4chan', 'gpt-4chan'])): | |
return 'gpt4chan' | |
else: | |
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code) | |
# Not a "catch all", but fairly accurate | |
if config.to_dict().get("is_encoder_decoder", False): | |
return 'HF_seq2seq' | |
else: | |
return 'HF_generic' | |
def load_model(model_name): | |
logging.info(f"Loading {model_name}...") | |
t0 = time.time() | |
shared.model_type = find_model_type(model_name) | |
if shared.model_type == 'None': | |
logging.error('The path to the model does not exist. Exiting.') | |
return None, None | |
if shared.args.autogptq: | |
load_func = AutoGPTQ_loader | |
elif shared.args.wbits > 0: | |
load_func = GPTQ_loader | |
elif shared.model_type == 'llamacpp': | |
load_func = llamacpp_loader | |
elif shared.model_type == 'rwkv': | |
load_func = RWKV_loader | |
elif shared.args.flexgen: | |
load_func = flexgen_loader | |
else: | |
load_func = huggingface_loader | |
output = load_func(model_name) | |
if type(output) is tuple: | |
model, tokenizer = output | |
else: | |
model = output | |
if model is None: | |
return None, None | |
else: | |
tokenizer = load_tokenizer(model_name, model) | |
# Hijack attention with xformers | |
if any((shared.args.xformers, shared.args.sdp_attention)): | |
llama_attn_hijack.hijack_llama_attention() | |
logging.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.\n") | |
return model, tokenizer | |
def load_tokenizer(model_name, model): | |
tokenizer = None | |
if shared.model_type == 'gpt4chan' and Path(f"{shared.args.model_dir}/gpt-j-6B/").exists(): | |
tokenizer = AutoTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/gpt-j-6B/")) | |
elif type(model) is transformers.LlamaForCausalLM: | |
# Try to load an universal LLaMA tokenizer | |
if shared.model_type not in ['llava', 'oasst']: | |
for p in [Path(f"{shared.args.model_dir}/llama-tokenizer/"), Path(f"{shared.args.model_dir}/oobabooga_llama-tokenizer/")]: | |
if p.exists(): | |
logging.info(f"Loading the universal LLaMA tokenizer from {p}...") | |
tokenizer = LlamaTokenizer.from_pretrained(p, clean_up_tokenization_spaces=True) | |
return tokenizer | |
# Otherwise, load it from the model folder and hope that these | |
# are not outdated tokenizer files. | |
tokenizer = LlamaTokenizer.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}/"), clean_up_tokenization_spaces=True) | |
try: | |
tokenizer.eos_token_id = 2 | |
tokenizer.bos_token_id = 1 | |
tokenizer.pad_token_id = 0 | |
except: | |
pass | |
else: | |
path_to_model = Path(f"{shared.args.model_dir}/{model_name}/") | |
if path_to_model.exists(): | |
tokenizer = AutoTokenizer.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code) | |
return tokenizer | |
def huggingface_loader(model_name): | |
if shared.model_type == 'chatglm': | |
LoaderClass = AutoModel | |
elif shared.model_type == 'HF_seq2seq': | |
LoaderClass = AutoModelForSeq2SeqLM | |
else: | |
LoaderClass = AutoModelForCausalLM | |
# Load the model in simple 16-bit mode by default | |
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None]): | |
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16, trust_remote_code=shared.args.trust_remote_code) | |
if torch.has_mps: | |
device = torch.device('mps') | |
model = model.to(device) | |
else: | |
model = model.cuda() | |
# DeepSpeed ZeRO-3 | |
elif shared.args.deepspeed: | |
model = LoaderClass.from_pretrained(Path(f"{shared.args.model_dir}/{model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16) | |
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0] | |
model.module.eval() # Inference | |
logging.info(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}") | |
# Custom | |
else: | |
params = { | |
"low_cpu_mem_usage": True, | |
"trust_remote_code": shared.args.trust_remote_code | |
} | |
if not any((shared.args.cpu, torch.cuda.is_available(), torch.has_mps)): | |
logging.warning("torch.cuda.is_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.") | |
shared.args.cpu = True | |
if shared.args.cpu: | |
params["torch_dtype"] = torch.float32 | |
else: | |
params["device_map"] = 'auto' | |
if shared.args.load_in_8bit and any((shared.args.auto_devices, shared.args.gpu_memory)): | |
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True) | |
elif shared.args.load_in_8bit: | |
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True) | |
elif shared.args.bf16: | |
params["torch_dtype"] = torch.bfloat16 | |
else: | |
params["torch_dtype"] = torch.float16 | |
params['max_memory'] = get_max_memory_dict() | |
if shared.args.disk: | |
params["offload_folder"] = shared.args.disk_cache_dir | |
checkpoint = Path(f'{shared.args.model_dir}/{model_name}') | |
if shared.args.load_in_8bit and params.get('max_memory', None) is not None and params['device_map'] == 'auto': | |
config = AutoConfig.from_pretrained(checkpoint, trust_remote_code=shared.args.trust_remote_code) | |
with init_empty_weights(): | |
model = LoaderClass.from_config(config, trust_remote_code=shared.args.trust_remote_code) | |
model.tie_weights() | |
params['device_map'] = infer_auto_device_map( | |
model, | |
dtype=torch.int8, | |
max_memory=params['max_memory'], | |
no_split_module_classes=model._no_split_modules | |
) | |
model = LoaderClass.from_pretrained(checkpoint, **params) | |
return model | |
def flexgen_loader(model_name): | |
from flexgen.flex_opt import CompressionConfig, ExecutionEnv, OptLM, Policy | |
# Initialize environment | |
env = ExecutionEnv.create(shared.args.disk_cache_dir) | |
# Offloading policy | |
policy = Policy(1, 1, | |
shared.args.percent[0], shared.args.percent[1], | |
shared.args.percent[2], shared.args.percent[3], | |
shared.args.percent[4], shared.args.percent[5], | |
overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight, | |
cpu_cache_compute=False, attn_sparsity=1.0, | |
compress_weight=shared.args.compress_weight, | |
comp_weight_config=CompressionConfig( | |
num_bits=4, group_size=64, | |
group_dim=0, symmetric=False), | |
compress_cache=False, | |
comp_cache_config=CompressionConfig( | |
num_bits=4, group_size=64, | |
group_dim=2, symmetric=False)) | |
model = OptLM(f"facebook/{model_name}", env, shared.args.model_dir, policy) | |
return model | |
def RWKV_loader(model_name): | |
from modules.RWKV import RWKVModel, RWKVTokenizer | |
model = RWKVModel.from_pretrained(Path(f'{shared.args.model_dir}/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda") | |
tokenizer = RWKVTokenizer.from_pretrained(Path(shared.args.model_dir)) | |
return model, tokenizer | |
def llamacpp_loader(model_name): | |
from modules.llamacpp_model import LlamaCppModel | |
path = Path(f'{shared.args.model_dir}/{model_name}') | |
if path.is_file(): | |
model_file = path | |
else: | |
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*ggml*.bin'))[0] | |
logging.info(f"llama.cpp weights detected: {model_file}\n") | |
model, tokenizer = LlamaCppModel.from_pretrained(model_file) | |
return model, tokenizer | |
def GPTQ_loader(model_name): | |
# Monkey patch | |
if shared.args.monkey_patch: | |
logging.warning("Applying the monkey patch for using LoRAs in 4-bit mode. It may cause undefined behavior outside its intended scope.") | |
from modules.monkey_patch_gptq_lora import load_model_llama | |
model, _ = load_model_llama(model_name) | |
# No monkey patch | |
else: | |
import modules.GPTQ_loader | |
model = modules.GPTQ_loader.load_quantized(model_name) | |
return model | |
def AutoGPTQ_loader(model_name): | |
import modules.AutoGPTQ_loader | |
return modules.AutoGPTQ_loader.load_quantized(model_name) | |
def get_max_memory_dict(): | |
max_memory = {} | |
if shared.args.gpu_memory: | |
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory)) | |
for i in range(len(memory_map)): | |
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i] | |
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB' | |
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory | |
# If --auto-devices is provided standalone, try to get a reasonable value | |
# for the maximum memory of device :0 | |
elif shared.args.auto_devices: | |
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024)) | |
suggestion = round((total_mem - 1000) / 1000) * 1000 | |
if total_mem - suggestion < 800: | |
suggestion -= 1000 | |
suggestion = int(round(suggestion / 1000)) | |
logging.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.") | |
max_memory = {0: f'{suggestion}GiB', 'cpu': f'{shared.args.cpu_memory or 99}GiB'} | |
return max_memory if len(max_memory) > 0 else None | |
def clear_torch_cache(): | |
gc.collect() | |
if not shared.args.cpu: | |
torch.cuda.empty_cache() | |
def unload_model(): | |
shared.model = shared.tokenizer = None | |
clear_torch_cache() | |
def reload_model(): | |
unload_model() | |
shared.model, shared.tokenizer = load_model(shared.model_name) | |
def load_soft_prompt(name): | |
if name == 'None': | |
shared.soft_prompt = False | |
shared.soft_prompt_tensor = None | |
else: | |
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf: | |
zf.extract('tensor.npy') | |
zf.extract('meta.json') | |
j = json.loads(open('meta.json', 'r').read()) | |
logging.info(f"\nLoading the softprompt \"{name}\".") | |
for field in j: | |
if field != 'name': | |
if type(j[field]) is list: | |
logging.info(f"{field}: {', '.join(j[field])}") | |
else: | |
logging.info(f"{field}: {j[field]}") | |
logging.info() | |
tensor = np.load('tensor.npy') | |
Path('tensor.npy').unlink() | |
Path('meta.json').unlink() | |
tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype) | |
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1])) | |
shared.soft_prompt = True | |
shared.soft_prompt_tensor = tensor | |
return name | |