Spaces:
Sleeping
Sleeping
#!/usr/bin/python | |
# -*- encoding: utf-8 -*- | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .resnet import Resnet18 | |
from models.modules.networks import init_net | |
class ConvBNReLU(nn.Module): | |
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs): | |
super(ConvBNReLU, self).__init__() | |
self.conv = nn.Conv2d(in_chan, | |
out_chan, | |
kernel_size = ks, | |
stride = stride, | |
padding = padding, | |
bias = False) | |
self.bn = nn.BatchNorm2d(out_chan) | |
self.init_weight() | |
def forward(self, x): | |
x = self.conv(x) | |
x = F.relu(self.bn(x)) | |
return x | |
def init_weight(self): | |
for ly in self.children(): | |
if isinstance(ly, nn.Conv2d): | |
nn.init.kaiming_normal_(ly.weight, a=1) | |
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |
class BiSeNetOutput(nn.Module): | |
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs): | |
super(BiSeNetOutput, self).__init__() | |
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) | |
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False) | |
self.init_weight() | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.conv_out(x) | |
return x | |
def init_weight(self): | |
for ly in self.children(): | |
if isinstance(ly, nn.Conv2d): | |
nn.init.kaiming_normal_(ly.weight, a=1) | |
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |
def get_params(self): | |
wd_params, nowd_params = [], [] | |
for _, module in self.named_modules(): | |
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): | |
wd_params.append(module.weight) | |
if not module.bias is None: | |
nowd_params.append(module.bias) | |
elif isinstance(module, nn.BatchNorm2d): | |
nowd_params += list(module.parameters()) | |
return wd_params, nowd_params | |
class AttentionRefinementModule(nn.Module): | |
def __init__(self, in_chan, out_chan, *args, **kwargs): | |
super(AttentionRefinementModule, self).__init__() | |
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) | |
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False) | |
self.bn_atten = nn.BatchNorm2d(out_chan) | |
self.sigmoid_atten = nn.Sigmoid() | |
self.init_weight() | |
def forward(self, x): | |
feat = self.conv(x) | |
atten = F.avg_pool2d(feat, feat.size()[2:]) | |
atten = self.conv_atten(atten) | |
atten = self.bn_atten(atten) | |
atten = self.sigmoid_atten(atten) | |
out = torch.mul(feat, atten) | |
return out | |
def init_weight(self): | |
for ly in self.children(): | |
if isinstance(ly, nn.Conv2d): | |
nn.init.kaiming_normal_(ly.weight, a=1) | |
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |
class ContextPath(nn.Module): | |
def __init__(self, *args, **kwargs): | |
super(ContextPath, self).__init__() | |
self.resnet = Resnet18() | |
self.arm16 = AttentionRefinementModule(256, 128) | |
self.arm32 = AttentionRefinementModule(512, 128) | |
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) | |
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) | |
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0) | |
self.init_weight() | |
def forward(self, x): | |
H0, W0 = x.size()[2:] | |
feat8, feat16, feat32 = self.resnet(x) | |
H8, W8 = feat8.size()[2:] | |
H16, W16 = feat16.size()[2:] | |
H32, W32 = feat32.size()[2:] | |
avg = F.avg_pool2d(feat32, feat32.size()[2:]) | |
avg = self.conv_avg(avg) | |
avg_up = F.interpolate(avg, (H32, W32), mode='nearest') | |
feat32_arm = self.arm32(feat32) | |
feat32_sum = feat32_arm + avg_up | |
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest') | |
feat32_up = self.conv_head32(feat32_up) | |
feat16_arm = self.arm16(feat16) | |
feat16_sum = feat16_arm + feat32_up | |
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest') | |
feat16_up = self.conv_head16(feat16_up) | |
return feat8, feat16_up, feat32_up # x8, x8, x16 | |
def init_weight(self): | |
for ly in self.children(): | |
if isinstance(ly, nn.Conv2d): | |
nn.init.kaiming_normal_(ly.weight, a=1) | |
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |
def get_params(self): | |
wd_params, nowd_params = [], [] | |
for _, module in self.named_modules(): | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
wd_params.append(module.weight) | |
if not module.bias is None: | |
nowd_params.append(module.bias) | |
elif isinstance(module, nn.BatchNorm2d): | |
nowd_params += list(module.parameters()) | |
return wd_params, nowd_params | |
### This is not used, since I replace this with the resnet feature with the same size | |
class SpatialPath(nn.Module): | |
def __init__(self, *args, **kwargs): | |
super(SpatialPath, self).__init__() | |
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3) | |
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1) | |
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1) | |
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0) | |
self.init_weight() | |
def forward(self, x): | |
feat = self.conv1(x) | |
feat = self.conv2(feat) | |
feat = self.conv3(feat) | |
feat = self.conv_out(feat) | |
return feat | |
def init_weight(self): | |
for ly in self.children(): | |
if isinstance(ly, nn.Conv2d): | |
nn.init.kaiming_normal_(ly.weight, a=1) | |
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |
def get_params(self): | |
wd_params, nowd_params = [], [] | |
for _, module in self.named_modules(): | |
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): | |
wd_params.append(module.weight) | |
if not module.bias is None: | |
nowd_params.append(module.bias) | |
elif isinstance(module, nn.BatchNorm2d): | |
nowd_params += list(module.parameters()) | |
return wd_params, nowd_params | |
class FeatureFusionModule(nn.Module): | |
def __init__(self, in_chan, out_chan, *args, **kwargs): | |
super(FeatureFusionModule, self).__init__() | |
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) | |
self.conv1 = nn.Conv2d(out_chan, | |
out_chan//4, | |
kernel_size = 1, | |
stride = 1, | |
padding = 0, | |
bias = False) | |
self.conv2 = nn.Conv2d(out_chan//4, | |
out_chan, | |
kernel_size = 1, | |
stride = 1, | |
padding = 0, | |
bias = False) | |
self.relu = nn.ReLU(inplace=True) | |
self.sigmoid = nn.Sigmoid() | |
self.init_weight() | |
def forward(self, fsp, fcp): | |
fcat = torch.cat([fsp, fcp], dim=1) | |
feat = self.convblk(fcat) | |
atten = F.avg_pool2d(feat, feat.size()[2:]) | |
atten = self.conv1(atten) | |
atten = self.relu(atten) | |
atten = self.conv2(atten) | |
atten = self.sigmoid(atten) | |
feat_atten = torch.mul(feat, atten) | |
feat_out = feat_atten + feat | |
return feat_out | |
def init_weight(self): | |
for ly in self.children(): | |
if isinstance(ly, nn.Conv2d): | |
nn.init.kaiming_normal_(ly.weight, a=1) | |
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |
def get_params(self): | |
wd_params, nowd_params = [], [] | |
for _, module in self.named_modules(): | |
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): | |
wd_params.append(module.weight) | |
if not module.bias is None: | |
nowd_params.append(module.bias) | |
elif isinstance(module, nn.BatchNorm2d): | |
nowd_params += list(module.parameters()) | |
return wd_params, nowd_params | |
class BiSeNet(nn.Module): | |
def __init__(self, n_classes, *args, **kwargs): | |
super(BiSeNet, self).__init__() | |
self.cp = ContextPath() | |
## here self.sp is deleted | |
self.ffm = FeatureFusionModule(256, 256) | |
self.conv_out = BiSeNetOutput(256, 256, n_classes) | |
self.conv_out16 = BiSeNetOutput(128, 64, n_classes) | |
self.conv_out32 = BiSeNetOutput(128, 64, n_classes) | |
self.init_weight() | |
def forward(self, x): | |
H, W = x.size()[2:] | |
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature | |
feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature | |
feat_fuse = self.ffm(feat_sp, feat_cp8) | |
feat_out = self.conv_out(feat_fuse) | |
feat_out16 = self.conv_out16(feat_cp8) | |
feat_out32 = self.conv_out32(feat_cp16) | |
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True) | |
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True) | |
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True) | |
return feat_out, feat_out16, feat_out32 | |
def init_weight(self): | |
for ly in self.children(): | |
if isinstance(ly, nn.Conv2d): | |
nn.init.kaiming_normal_(ly.weight, a=1) | |
if not ly.bias is None: nn.init.constant_(ly.bias, 0) | |
def get_params(self): | |
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], [] | |
for _, child in self.named_children(): | |
child_wd_params, child_nowd_params = child.get_params() | |
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput): | |
lr_mul_wd_params += child_wd_params | |
lr_mul_nowd_params += child_nowd_params | |
else: | |
wd_params += child_wd_params | |
nowd_params += child_nowd_params | |
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params | |
class PartWeightsGenerator(): | |
def __init__(self, gpu_ids, DDP_device): | |
super(PartWeightsGenerator, self).__init__() | |
# init face parsing network | |
self.net = BiSeNet(n_classes=19) | |
self.net = init_net(self.net, gpu_ids=gpu_ids, DDP_device=DDP_device) | |
if isinstance(self.net, torch.nn.DataParallel) or isinstance(self.net, torch.nn.parallel.DistributedDataParallel): | |
self.net = self.net.module | |
cur_folder = os.path.split(__file__)[0] | |
self.net.load_state_dict(torch.load(os.path.join(cur_folder, 'face_parsing.pth'), map_location=lambda storage, loc: storage)) | |
self.net.eval() | |
# init some tensors | |
self.mu = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1) | |
self.sigma = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1) | |
self.gauss_kernel = torch.tensor([1,4,7,4,1,4,16,26,16,4,7,26,41,26,7,4,16,26,16,4,1,4,7,4,1],).view(1, 1, 5, 5) / 273.0 | |
if len(gpu_ids) > 0 or not DDP_device is None: | |
device = DDP_device if not DDP_device is None else gpu_ids[0] | |
self.mu = self.mu.to(device) | |
self.sigma = self.sigma.to(device) | |
self.gauss_kernel = self.gauss_kernel.to(device) | |
# init attributes list | |
self.atts_list = [ | |
'background', #0 | |
'skin', #1 | |
'left_brow', #2 | |
'right_brow', #3 | |
'left_eye', #4 | |
'right_eye', #5 | |
'eye_glasses', #6 | |
'left_ear', #7 | |
'right_ear', #8 | |
'ear_rings', #9 | |
'nose', #10 | |
'teeth', #11 | |
'upper_lip', #12 | |
'lower_lip', #13 | |
'neck', #14 | |
'necklace', #15 | |
'cloth', #16 | |
'hair', #17 | |
'hat', #18 | |
] | |
def generate_masks(self, img): | |
with torch.no_grad(): | |
_, _, h, w = img.size() | |
img_512 = F.interpolate(img, size=512, mode='bilinear') | |
pred_512 = self.net((img_512 * 0.5 + 0.5 - self.mu) / self.sigma)[0] | |
pred = F.interpolate(pred_512, size=(h, w), mode='bilinear') | |
pred = pred.argmax(1, keepdim=True) | |
skin_mask = torch.zeros_like(pred).float() | |
skin_mask[pred == 1] = 1.0 | |
skin_mask[pred == 7] = 1.0 | |
skin_mask[pred == 8] = 1.0 | |
skin_mask[pred == 10] = 1.0 | |
skin_mask[pred == 14] = 1.0 | |
skin_mask = F.conv2d(skin_mask, self.gauss_kernel, padding=2) | |
eye_mask = torch.zeros_like(pred).float() | |
eye_mask[pred == 4] = 1.0 | |
eye_mask[pred == 5] = 1.0 | |
eye_mask = F.conv2d(eye_mask, self.gauss_kernel, padding=2) | |
mouth_mask = torch.zeros_like(pred).float() | |
mouth_mask[pred == 11] = 1.0 | |
mouth_mask[pred == 12] = 1.0 | |
mouth_mask[pred == 13] = 1.0 | |
mouth_mask = F.conv2d(mouth_mask, self.gauss_kernel, padding=2) | |
hair_mask = torch.zeros_like(pred).float() | |
hair_mask[pred == 17] = 1.0 | |
hair_mask = F.conv2d(hair_mask, self.gauss_kernel, padding=2) | |
return skin_mask, eye_mask, mouth_mask, hair_mask | |
def generate_weights(self, img, weights_dict, blur=True): | |
with torch.no_grad(): | |
_, _, h, w = img.size() | |
img_512 = F.interpolate(img, size=512, mode='bilinear') | |
pred_512 = self.net((img_512 * 0.5 + 0.5 - self.mu) / self.sigma)[0] | |
pred = F.interpolate(pred_512, size=(h, w), mode='bilinear') | |
pred = pred.argmax(1, keepdim=True) | |
weights = torch.ones_like(pred).float() | |
for idx, att in enumerate(self.atts_list): | |
if att in weights_dict: | |
weights[pred == idx] = weights_dict[att] | |
if blur: | |
return F.conv2d(weights, self.gauss_kernel, padding=2) | |
else: | |
return weights | |
class GradWeightFunc(torch.autograd.Function): | |
def forward(ctx, img, weights): | |
ctx.param = (weights, ) | |
return img | |
def backward(ctx, grad): | |
weights = ctx.param[0] | |
return weights * grad, None | |
class GradWeightLayer(nn.Module): | |
def __init__(self): | |
super(GradWeightLayer, self).__init__() | |
def forward(self, img, weights): | |
return GradWeightFunc.apply(img, weights) | |