Spaces:
Sleeping
Sleeping
import os | |
from utils.util import check_path_is_static_data | |
from utils.data_utils import Transforms | |
from utils.augmentation import ImagePathToImage, NumpyToTensor | |
def add_test_data(data, transforms, config): | |
A_paths = [] | |
B_paths = [] | |
if not config['testing']['test_img'] is None: | |
A_paths.append(config['testing']['test_img']) | |
B_paths.append(config['testing']['test_img']) | |
else: | |
files = os.listdir(config['testing']['test_folder']) | |
for fn in files: | |
if not check_path_is_static_data(fn): | |
continue | |
full_path = os.path.join(config['testing']['test_folder'], fn) | |
A_paths.append(full_path) | |
B_paths.append(full_path) | |
btoA = config['dataset']['direction'] == 'BtoA' | |
# get the number of channels of input image | |
input_nc = config['model']['output_nc'] if btoA else config['model']['input_nc'] | |
output_nc = config['model']['input_nc'] if btoA else config['model']['output_nc'] | |
transform = Transforms(config, input_grayscale_flag=(input_nc == 1), output_grayscale_flag=(output_nc == 1)) | |
transform.create_transforms_from_list(config['testing']['preprocess']) | |
transform.get_transforms().insert(0, ImagePathToImage()) | |
transform = transform.compose_transforms() | |
transform_np = Transforms(config, input_grayscale_flag=(input_nc == 1), output_grayscale_flag=(output_nc == 1)) | |
transform_np.transform_list.append(NumpyToTensor()) | |
transform_np = transform_np.compose_transforms() | |
data['test_A_path'] = A_paths | |
data['test_B_path'] = B_paths | |
transforms['test'] = transform | |
transforms['test_np'] = transform_np | |
def apply_test_transforms(index, data, transforms, return_dict): | |
if len(data['test_A_path']) > 0: | |
ext_name = os.path.splitext(data['test_A_path'][index])[1] | |
if not ext_name.lower() in ['.npy', '.npz']: | |
return_dict['test_A'], return_dict['test_B'] = transforms['test'] \ | |
(data['test_A_path'][index], data['test_B_path'][index]) | |
else: | |
return_dict['test_A'], return_dict['test_B'] = transforms['test_np'] \ | |
(data['test_A_path'][index], data['test_B_path'][index]) | |
return_dict['test_A_path'] = data['test_A_path'][index] | |
return_dict['test_B_path'] = data['test_B_path'][index] | |