Spaces:
Build error
Build error
Upload 6 files
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
|
6 |
+
|
7 |
+
def img2label(left, right):
|
8 |
+
left_img = Image.open(left).convert('RGB')
|
9 |
+
right_img = Image.open(right).convert('RGB')
|
10 |
+
# 将右眼底镜像反转
|
11 |
+
r2l = transforms.RandomHorizontalFlip(p=1)
|
12 |
+
right_img = r2l(right_img)
|
13 |
+
|
14 |
+
# 调整图片
|
15 |
+
left_img = my_transforms(left_img).to(device)
|
16 |
+
right_img = my_transforms(right_img).to(device)
|
17 |
+
|
18 |
+
# 读取模型
|
19 |
+
model = torch.load('densenet_FD_e4_l5e-4_b32.pkl', map_location='cpu').to(device)
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
output = model(left=left_img.unsqueeze(0), right=right_img.unsqueeze(0))
|
23 |
+
|
24 |
+
output = torch.sigmoid(output.squeeze(0))
|
25 |
+
pred = output.cpu().numpy().tolist()
|
26 |
+
|
27 |
+
return {LABELS[i]: pred[i] for i in range(len(pred))}
|
28 |
+
|
29 |
+
|
30 |
+
if __name__ == '__main__':
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
|
33 |
+
# 标题
|
34 |
+
title = "基于眼底图像的智能健康诊断分析系统"
|
35 |
+
# 标题下的描述,支持md格式
|
36 |
+
description = "上传并输入左右眼底图像后,点击 submit 按钮,可根据双目眼底图像智能分析出可能有的疾病!" \
|
37 |
+
"包含的疾病种类有:糖尿病、青光眼、白内障、年龄性黄斑变性、高血压、病理性近视、其他疾病以及正常共计8类"
|
38 |
+
|
39 |
+
# transforms设置
|
40 |
+
norm_mean = [0.485, 0.456, 0.406]
|
41 |
+
norm_std = [0.229, 0.224, 0.225]
|
42 |
+
my_transforms = transforms.Compose([
|
43 |
+
transforms.Resize((224, 224)),
|
44 |
+
transforms.ToTensor(),
|
45 |
+
transforms.Normalize(norm_mean, norm_std)
|
46 |
+
])
|
47 |
+
|
48 |
+
LABELS = {0: '正常',
|
49 |
+
1: '糖尿病',
|
50 |
+
2: '青光眼',
|
51 |
+
3: '白内障',
|
52 |
+
4: '年龄性黄斑变性',
|
53 |
+
5: '高血压',
|
54 |
+
6: '病理性近视',
|
55 |
+
7: '其他疾病'}
|
56 |
+
|
57 |
+
left_img_dir = 'left.jpg'
|
58 |
+
right_img_dir = 'right.jpg'
|
59 |
+
r = img2label(left_img_dir, right_img_dir)
|
60 |
+
demo = gr.Interface(fn=img2label, inputs=[gr.inputs.Image(), gr.inputs.Image()], outputs='label',
|
61 |
+
title=title, description=description)
|
62 |
+
demo.launch(share=True)
|
config/__pycache__/finetune_config.cpython-36.pyc
ADDED
Binary file (1.38 kB). View file
|
|
config/finetune_config.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
|
4 |
+
def set_args():
|
5 |
+
parser = argparse.ArgumentParser()
|
6 |
+
parser.add_argument('--save_name', default='densenet_ce_e4_b32_lr1e-4.pkl', type=str,
|
7 |
+
help='保存模型的名字,默认路径在 ./model_parameters/f')
|
8 |
+
parser.add_argument('--model_selection', default='MX', type=str,
|
9 |
+
help='模型选择,M 表示模改过的,没有则表示原来的')
|
10 |
+
parser.add_argument('--pt', default='FD', type=str,
|
11 |
+
help='有 FD 和 IN 两种,FD 表示预训练是眼底图像,IN 表示预训练是 imagenet')
|
12 |
+
parser.add_argument('--finetune_path', default='model_parameters/p/resnext_ce_e4_b32_lr1e-4.pkl', type=str,
|
13 |
+
help='所选用预训练模型的路径')
|
14 |
+
parser.add_argument('--feature_module', default='cat', type=str,
|
15 |
+
help='特征融合的方式,有 cat、mul、sum 三种方式,只在原始模型有效')
|
16 |
+
parser.add_argument('--opt', default='adamw', type=str, help='优化器')
|
17 |
+
parser.add_argument('--warmup_select', default='linear', type=str,
|
18 |
+
help='')
|
19 |
+
parser.add_argument('--MAX_EPOCH', default=4, type=int,
|
20 |
+
help='')
|
21 |
+
parser.add_argument('--BATCH_SIZE', default=32, type=int,
|
22 |
+
help='')
|
23 |
+
parser.add_argument('--start_epoch', default=0, type=int,
|
24 |
+
help='')
|
25 |
+
parser.add_argument('--LR', default=5e-4, type=float,
|
26 |
+
help='')
|
27 |
+
parser.add_argument('--WD', default=1e-2, type=float,
|
28 |
+
help='')
|
29 |
+
parser.add_argument('--adam_epsilon', default=1e-8, type=float,
|
30 |
+
help='')
|
31 |
+
parser.add_argument('--warmup_proportion', default=0.1, type=float,
|
32 |
+
help='')
|
33 |
+
return parser.parse_args()
|
densenet_FD_e4_l5e-4_b32.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:746019148ee61f72424b1f866b28ec220815413f3c5ca52436c6de24d9054b9a
|
3 |
+
size 732694486
|
models/__pycache__/modified_dual_densenet.cpython-36.pyc
ADDED
Binary file (2.68 kB). View file
|
|
models/modified_dual_densenet.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torchvision.models import densenet169
|
4 |
+
from config.finetune_config import set_args
|
5 |
+
|
6 |
+
args = set_args()
|
7 |
+
|
8 |
+
|
9 |
+
class Classifier(nn.Module):
|
10 |
+
def __init__(self, num_classes):
|
11 |
+
super(Classifier, self).__init__()
|
12 |
+
self.GDConv1 = nn.Conv2d(1664 * 2, 1024, kernel_size=4, padding=0, dilation=2)
|
13 |
+
self.GDConv2 = nn.Conv2d(1664 * 2, 1024, kernel_size=5, padding=1, dilation=2)
|
14 |
+
self.GDConv3 = nn.Conv2d(1664 * 2, 1024, kernel_size=3, padding=0, dilation=3)
|
15 |
+
self.LN1 = nn.LayerNorm([1024, 1, 1])
|
16 |
+
self.LN2 = nn.LayerNorm([1024, 1, 1])
|
17 |
+
self.LN3 = nn.LayerNorm([1024, 1, 1])
|
18 |
+
self.gelu = nn.GELU()
|
19 |
+
self.fc_dropout = nn.Dropout(0.2)
|
20 |
+
self.fc = nn.Linear(1024 * 3, num_classes)
|
21 |
+
|
22 |
+
for m in self.modules():
|
23 |
+
if isinstance(m, nn.Conv2d):
|
24 |
+
nn.init.kaiming_normal_(m.weight)
|
25 |
+
elif isinstance(m, nn.BatchNorm2d):
|
26 |
+
nn.init.constant_(m.weight, 1)
|
27 |
+
nn.init.constant_(m.bias, 0)
|
28 |
+
elif isinstance(m, nn.Linear):
|
29 |
+
nn.init.constant_(m.bias, 0)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x1 = self.GDConv1(x)
|
33 |
+
x1 = self.LN1(x1)
|
34 |
+
x1 = x1.view(x1.size(0), -1)
|
35 |
+
|
36 |
+
x2 = self.GDConv2(x)
|
37 |
+
x2 = self.LN2(x2)
|
38 |
+
x2 = x2.view(x2.size(0), -1)
|
39 |
+
|
40 |
+
x3 = self.GDConv3(x)
|
41 |
+
x3 = self.LN3(x3)
|
42 |
+
x3 = x3.view(x3.size(0), -1)
|
43 |
+
|
44 |
+
X = torch.cat((x1, x2, x3), 1)
|
45 |
+
X = self.gelu(X)
|
46 |
+
output = self.fc(self.fc_dropout(X))
|
47 |
+
|
48 |
+
return output
|
49 |
+
|
50 |
+
|
51 |
+
class M_DenseNet(nn.Module):
|
52 |
+
def __init__(self, pretrain='IN', num_classes=8):
|
53 |
+
super(M_DenseNet, self).__init__()
|
54 |
+
# feature layer
|
55 |
+
if pretrain == 'IN':
|
56 |
+
model = densenet169(pretrained=True) # 此处的model参数是已经加载了预训练参数的模型
|
57 |
+
self.feature = nn.Sequential(*list(model.children())[:-1])
|
58 |
+
else:
|
59 |
+
model = torch.load(args.finetune_path)
|
60 |
+
self.feature = nn.Sequential(*list(model.children())[:-2])
|
61 |
+
self.classifier = Classifier(num_classes)
|
62 |
+
|
63 |
+
def forward(self, left, right):
|
64 |
+
left = self.feature(left)
|
65 |
+
right = self.feature(right)
|
66 |
+
x = torch.cat((left, right), 1)
|
67 |
+
|
68 |
+
X = self.classifier(x)
|
69 |
+
|
70 |
+
return X
|
71 |
+
|
72 |
+
|
73 |
+
if __name__ == '__main__':
|
74 |
+
model = M_DenseNet()
|
75 |
+
input1 = torch.normal(0, 1, size=(4, 3, 224, 224))
|
76 |
+
input2 = torch.normal(0, 1, size=(4, 3, 224, 224))
|
77 |
+
output = model(input1, input2)
|
78 |
+
print(output)
|