Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
# Initialize the image classification pipeline | |
classifier = pipeline("image-classification", model="google/vit-base-patch16-224") | |
# Initialize the tokenizer and model for the generative text | |
model_name = "EleutherAI/gpt-neo-2.7B" # Using GPT-Neo for demonstration | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def generate_tweet(label): | |
# Generate a tweet about the label | |
prompt = f"write a tweet about {label}" | |
inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=True) | |
outputs = model.generate(inputs, max_length=280, num_return_sequences=1, no_repeat_ngram_size=2) | |
tweet = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return tweet | |
def predict(image): | |
predictions = classifier(image) | |
# Sort predictions based on confidence and select the top one | |
top_prediction = sorted(predictions, key=lambda x: x['score'], reverse=True)[0] | |
label = top_prediction['label'].split(',')[0] # Clean up label if necessary | |
# Generate the tweet | |
tweet = generate_tweet(label) | |
return tweet | |
title = "Image Classifier to Generative Tweet" | |
description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model and generates a tweet about the top prediction using the GPT-Neo model for generating creative and engaging content." | |
input_component = gr.Image(type="pil", label="Upload an image here") | |
output_component = gr.Textbox(label="Generated Promotional Tweet") | |
gr.Interface(fn=predict, inputs=input_component, outputs=output_component, title=title, description=description).launch() | |