scite-qa-demo / app.py
domenicrosati's picture
fix limit and highlighting and empty docs
8890bde
raw
history blame
4.56 kB
import streamlit as st
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
SCITE_API_KEY = st.secrets["SCITE_API_KEY"]
def remove_html(x):
soup = BeautifulSoup(x, 'html.parser')
text = soup.get_text()
return text
def search(term, limit=25):
search = f"https://api.scite.ai/search?mode=citations&term={term}&limit={limit}&offset=0&user_slug=domenic-rosati-keW5&compute_aggregations=false"
req = requests.get(
search,
headers={
'Authorization': f'Bearer {SCITE_API_KEY}'
}
)
return (
remove_html('\n'.join(['\n'.join([cite['snippet'] for cite in doc['citations']]) for doc in req.json()['hits']])),
[(doc['doi'], doc['citations'], doc['title']) for doc in req.json()['hits']]
)
def find_source(text, docs):
for doc in docs:
if text in remove_html(doc[1][0]['snippet']):
new_text = text
for snip in remove_html(doc[1][0]['snippet']).split('.'):
if text in snip:
new_text = snip
return {
'citation_statement': doc[1][0]['snippet'].replace('<strong class="highlight">', '').replace('</strong>', ''),
'text': new_text,
'from': doc[1][0]['source'],
'supporting': doc[1][0]['target'],
'source_title': doc[2],
'source_link': f"https://scite.ai/reports/{doc[0]}"
}
return {
'citation_statement': '',
'text': text,
'from': '',
'supporting': '',
'source_title': '',
'source_link': ''
}
@st.experimental_singleton
def init_models():
question_answerer = pipeline("question-answering", model='sultan/BioM-ELECTRA-Large-SQuAD2-BioASQ8B')
return question_answerer
qa_model = init_models()
def card(title, context, score, link):
return st.markdown(f"""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-12 col-sm-12">
<br>
<span>
{context}
[<b>Score: </b>{score}]
</span>
<br>
<b>From <a href="{link}">{title}</a></b>
</div>
</div>
</div>
""", unsafe_allow_html=True)
st.title("Scientific Question Answering with Citations")
st.write("""
Ask a scientific question and get an answer drawn from [scite.ai](https://scite.ai) corpus of over 1.1bn citation statements.
Answers are linked to source documents containing citations where users can explore further evidence from scientific literature for the answer.
""")
st.markdown("""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.0.0/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
""", unsafe_allow_html=True)
def run_query(query):
context, orig_docs = search(query)
if not context.strip():
return st.markdown("""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-12 col-sm-12">
Sorry... no results for that question! Try another...
</div>
</div>
</div>
""", unsafe_allow_html=True)
results = []
model_results = qa_model(question=query, context=context, top_k=10)
for result in model_results:
support = find_source(result['answer'], orig_docs)
results.append({
"answer": support['text'],
"title": support['source_title'],
"link": support['source_link'],
"context": support['citation_statement'],
"score": result['score']
})
sorted_result = sorted(results, key=lambda x: x['score'], reverse=True)
sorted_result = list({
result['context']: result for result in sorted_result
}.values())
sorted_result = sorted(sorted_result, key=lambda x: x['score'], reverse=True)
for r in sorted_result:
answer = r["answer"]
ctx = remove_html(r["context"]).replace(answer, f"<mark>{answer}</mark>").replace('<cite', '<a').replace('</cite', '</a').replace('data-doi="', 'href="https://scite.ai/reports/')
title = r["title"].replace("_", " ")
score = round(r["score"], 4)
card(title, ctx, score, r['link'])
query = st.text_input("Ask scientific literature a question", "")
if query != "":
run_query(query)