Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- inference.py +145 -0
- main.py +115 -0
- model.py +222 -0
- transformer_clip_gpt-007.pt +3 -0
inference.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
from torch.nn import functional as nnf
|
7 |
+
|
8 |
+
# @st.cache_data
|
9 |
+
def generate2(
|
10 |
+
model,
|
11 |
+
tokenizer,
|
12 |
+
tokens=None,
|
13 |
+
prompt='',
|
14 |
+
embed=None,
|
15 |
+
entry_count=1,
|
16 |
+
entry_length=67,
|
17 |
+
top_p=0.98,
|
18 |
+
temperature=1,
|
19 |
+
stop_token='.',
|
20 |
+
):
|
21 |
+
|
22 |
+
# model.eval()
|
23 |
+
|
24 |
+
generated_list = []
|
25 |
+
stop_token_index = tokenizer.encode(stop_token)[0]
|
26 |
+
filter_value = -float("Inf")
|
27 |
+
device = next(model.parameters()).device
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
for entry_idx in range(entry_count):
|
31 |
+
if not tokens:
|
32 |
+
tokens = torch.tensor(tokenizer.encode(prompt))
|
33 |
+
tokens = tokens.unsqueeze(0).to(device)
|
34 |
+
|
35 |
+
emb_tokens = model.gpt.transformer.wte(tokens)
|
36 |
+
|
37 |
+
if embed is not None:
|
38 |
+
generated = torch.cat((embed, emb_tokens), dim=1)
|
39 |
+
else:
|
40 |
+
generated = emb_tokens
|
41 |
+
|
42 |
+
for i in range(entry_length):
|
43 |
+
outputs = model.gpt(inputs_embeds=generated)
|
44 |
+
logits = outputs.logits
|
45 |
+
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
46 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
47 |
+
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
|
48 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
49 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
50 |
+
..., :-1
|
51 |
+
].clone()
|
52 |
+
sorted_indices_to_remove[..., 0] = 0
|
53 |
+
|
54 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
55 |
+
logits[:, indices_to_remove] = filter_value
|
56 |
+
|
57 |
+
top_k = 2000
|
58 |
+
top_p = 0.98
|
59 |
+
|
60 |
+
next_token = torch.argmax(logits, -1).unsqueeze(0)
|
61 |
+
next_token_embed = model.gpt.transformer.wte(next_token)
|
62 |
+
|
63 |
+
if tokens is None:
|
64 |
+
tokens = next_token
|
65 |
+
else:
|
66 |
+
tokens = torch.cat((tokens, next_token), dim=1)
|
67 |
+
|
68 |
+
generated = torch.cat((generated, next_token_embed), dim=1)
|
69 |
+
|
70 |
+
if stop_token_index == next_token.item():
|
71 |
+
break
|
72 |
+
|
73 |
+
output_list = list(tokens.squeeze().cpu().numpy())
|
74 |
+
|
75 |
+
output_text = tokenizer.decode(output_list)
|
76 |
+
output_text = filter_ngrams(output_text)
|
77 |
+
generated_list.append(output_text)
|
78 |
+
|
79 |
+
return generated_list[0]
|
80 |
+
|
81 |
+
def filter_ngrams(output_text):
|
82 |
+
a_pos = output_text.find(' A:')
|
83 |
+
sec_a_pos = output_text.find(' A:', a_pos + 1)
|
84 |
+
|
85 |
+
return output_text[:sec_a_pos]
|
86 |
+
|
87 |
+
def image_grid(imgs, rows, cols):
|
88 |
+
assert len(imgs) == rows * cols
|
89 |
+
|
90 |
+
w, h = imgs[0].size
|
91 |
+
grid = Image.new('RGB', size=(cols * w, rows * h))
|
92 |
+
grid_w, grid_h = grid.size
|
93 |
+
|
94 |
+
for i, img in enumerate(imgs):
|
95 |
+
grid.paste(img, box=(i % cols * w, i // cols * h))
|
96 |
+
|
97 |
+
return grid
|
98 |
+
|
99 |
+
@st.cache_data
|
100 |
+
def read_video(path, transform=None, frames_num=9, window=30):
|
101 |
+
frames = []
|
102 |
+
|
103 |
+
cap = cv2.VideoCapture(path)
|
104 |
+
|
105 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
106 |
+
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
107 |
+
N = length // (frames_num)
|
108 |
+
current_frame = 1
|
109 |
+
|
110 |
+
for i in range(length):
|
111 |
+
ret, frame = cap.read(current_frame)
|
112 |
+
|
113 |
+
if ret and i == current_frame and len(frames) < frames_num:
|
114 |
+
size = 193, 193
|
115 |
+
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
116 |
+
frame.thumbnail(size, Image.ANTIALIAS)
|
117 |
+
|
118 |
+
frames.append(frame)
|
119 |
+
current_frame += N
|
120 |
+
|
121 |
+
cap.release()
|
122 |
+
|
123 |
+
return frames
|
124 |
+
|
125 |
+
# @st.cache_data
|
126 |
+
def get_caption(model, tokenizer, prefix, prefix_length, prompt=''):
|
127 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
128 |
+
prefix = prefix.to(device)
|
129 |
+
|
130 |
+
with torch.no_grad():
|
131 |
+
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
|
132 |
+
|
133 |
+
if prompt:
|
134 |
+
generated_text_prefix = generate2(model, tokenizer, prompt=prompt, embed=prefix_embed)
|
135 |
+
else:
|
136 |
+
generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed)
|
137 |
+
|
138 |
+
return generated_text_prefix.replace('\n', ' ')
|
139 |
+
|
140 |
+
# @st.cache_data
|
141 |
+
def get_ans(model, tokenizer, clip_emb, prefix_length, prompt):
|
142 |
+
output = get_caption(model, tokenizer, clip_emb, prefix_length, prompt=prompt)
|
143 |
+
ans = output[len(prompt):].strip()
|
144 |
+
|
145 |
+
return {'answer': ans}
|
main.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import clip
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import GPT2Tokenizer
|
10 |
+
from model import *
|
11 |
+
from inference import *
|
12 |
+
|
13 |
+
st.set_page_config(
|
14 |
+
page_title="Video Analysis AI",
|
15 |
+
page_icon="🕶️",
|
16 |
+
)
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def load_model():
|
20 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
21 |
+
clip_model, preprocess = clip.load("ViT-L/14@336px", device=device, jit=False)
|
22 |
+
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3large_based_on_gpt2')
|
23 |
+
|
24 |
+
prefix_length = 50
|
25 |
+
model_path = 'transformer_clip_gpt-007.pt'
|
26 |
+
model = ClipCaptionModel('sberbank-ai/rugpt3small_based_on_gpt2', prefix_length=prefix_length)
|
27 |
+
|
28 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
29 |
+
model.to(device)
|
30 |
+
model.eval()
|
31 |
+
|
32 |
+
return model, clip_model, preprocess, tokenizer
|
33 |
+
|
34 |
+
def _max_width_():
|
35 |
+
max_width_str = f"max-width: 1400px;"
|
36 |
+
st.markdown(
|
37 |
+
f"""
|
38 |
+
<style>
|
39 |
+
.reportview-container .main .block-container{{
|
40 |
+
{max_width_str}
|
41 |
+
}}
|
42 |
+
</style>
|
43 |
+
""",
|
44 |
+
unsafe_allow_html=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
_max_width_()
|
48 |
+
|
49 |
+
|
50 |
+
def main():
|
51 |
+
model, clip_model, preprocess, tokenizer = load_model()
|
52 |
+
prefix_length = 50
|
53 |
+
|
54 |
+
st.title("🦾 Video Analysis for Education")
|
55 |
+
st.header("")
|
56 |
+
|
57 |
+
with st.sidebar.expander("ℹ️ - About application", expanded=True):
|
58 |
+
st.write(
|
59 |
+
"""
|
60 |
+
- Upload the video
|
61 |
+
- Make a question about the content of the video
|
62 |
+
- Recieve answer according your question prompt
|
63 |
+
"""
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
uploaded_file = st.file_uploader("📌 Upload video: ", ['.mp4'])
|
68 |
+
|
69 |
+
# if play_video:
|
70 |
+
# video_bytes = uploaded_file.read()
|
71 |
+
# st.video(video_bytes)
|
72 |
+
|
73 |
+
st.write("---")
|
74 |
+
|
75 |
+
question = st.text_input("❔ Enter question prompt: ", "")
|
76 |
+
|
77 |
+
|
78 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
79 |
+
tfile.write(uploaded_file.read())
|
80 |
+
|
81 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
82 |
+
val_embeddings = []
|
83 |
+
val_captions = []
|
84 |
+
result = ''
|
85 |
+
text = f'Question: {question}? Answer:'
|
86 |
+
|
87 |
+
#read video -> get_ans
|
88 |
+
video = read_video(tfile.name, transform=None, frames_num=4)
|
89 |
+
|
90 |
+
if len(video) > 0:
|
91 |
+
i = image_grid(video, 2, 2)
|
92 |
+
image = preprocess(i).unsqueeze(0).to(device)
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
|
96 |
+
|
97 |
+
val_embeddings.append(prefix)
|
98 |
+
val_captions.append(text)
|
99 |
+
|
100 |
+
answers = []
|
101 |
+
|
102 |
+
for i in tqdm(range(len(val_embeddings))):
|
103 |
+
emb = val_embeddings[i]
|
104 |
+
caption = val_captions[i]
|
105 |
+
|
106 |
+
ans = get_ans(model, tokenizer, emb, prefix_length, caption)
|
107 |
+
answers.append(ans['answer'])
|
108 |
+
|
109 |
+
result = answers[0].split(' A: ')[0]
|
110 |
+
|
111 |
+
res = st.text_input('✅ Answer to the question', result, disabled=False)
|
112 |
+
|
113 |
+
|
114 |
+
if __name__ == '__main__':
|
115 |
+
main()
|
model.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import clip
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import torch
|
6 |
+
import transformers
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from enum import Enum
|
11 |
+
from torch.nn import functional as nnf
|
12 |
+
from typing import Tuple, Optional, Union
|
13 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
14 |
+
|
15 |
+
class MappingType(Enum):
|
16 |
+
MLP = 'mlp'
|
17 |
+
Transformer = 'transformer'
|
18 |
+
|
19 |
+
class MlpTransformer(nn.Module):
|
20 |
+
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.):
|
21 |
+
super().__init__()
|
22 |
+
out_d = out_d if out_d is not None else in_dim
|
23 |
+
self.fc1 = nn.Linear(in_dim, h_dim)
|
24 |
+
self.act = act
|
25 |
+
self.fc2 = nn.Linear(h_dim, out_d)
|
26 |
+
self.dropout = nn.Dropout(dropout)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.fc1(x)
|
30 |
+
x = self.act(x)
|
31 |
+
x = self.dropout(x)
|
32 |
+
x = self.fc2(x)
|
33 |
+
x = self.dropout(x)
|
34 |
+
|
35 |
+
return x
|
36 |
+
|
37 |
+
class MLP(nn.Module):
|
38 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
39 |
+
return self.model(x)
|
40 |
+
|
41 |
+
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
|
42 |
+
super(MLP, self).__init__()
|
43 |
+
layers = []
|
44 |
+
for i in range(len(sizes) - 1):
|
45 |
+
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
|
46 |
+
if i < len(sizes) - 2:
|
47 |
+
layers.append(act())
|
48 |
+
|
49 |
+
self.model = nn.Sequential(*layers)
|
50 |
+
|
51 |
+
|
52 |
+
class MultiHeadAttention(nn.Module):
|
53 |
+
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
|
54 |
+
super().__init__()
|
55 |
+
self.num_heads = num_heads
|
56 |
+
head_dim = dim_self // num_heads
|
57 |
+
self.scale = head_dim ** -0.5
|
58 |
+
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
|
59 |
+
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
|
60 |
+
self.project = nn.Linear(dim_self, dim_self)
|
61 |
+
self.dropout = nn.Dropout(dropout)
|
62 |
+
|
63 |
+
def forward(self, x, y=None, mask=None):
|
64 |
+
y = y if y is not None else x
|
65 |
+
b, n, c = x.shape
|
66 |
+
_, m, d = y.shape
|
67 |
+
|
68 |
+
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
|
69 |
+
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
|
70 |
+
keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
|
71 |
+
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
|
72 |
+
|
73 |
+
if mask is not None:
|
74 |
+
if mask.dim() == 2:
|
75 |
+
mask = mask.unsqueeze(1)
|
76 |
+
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
|
77 |
+
|
78 |
+
attention = attention.softmax(dim=2)
|
79 |
+
|
80 |
+
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
|
81 |
+
out = self.project(out)
|
82 |
+
|
83 |
+
return out, attention
|
84 |
+
|
85 |
+
|
86 |
+
class TransformerLayer(nn.Module):
|
87 |
+
def forward_with_attention(self, x, y=None, mask=None):
|
88 |
+
x_, attention = self.attn(self.norm1(x), y, mask)
|
89 |
+
x = x + x_
|
90 |
+
x = x + self.mlp(self.norm2(x))
|
91 |
+
|
92 |
+
return x, attention
|
93 |
+
|
94 |
+
def forward(self, x, y=None, mask=None):
|
95 |
+
x = x + self.attn(self.norm1(x), y, mask)[0]
|
96 |
+
x = x + self.mlp(self.norm2(x))
|
97 |
+
|
98 |
+
return x
|
99 |
+
|
100 |
+
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu,
|
101 |
+
norm_layer: nn.Module = nn.LayerNorm):
|
102 |
+
super().__init__()
|
103 |
+
self.norm1 = norm_layer(dim_self)
|
104 |
+
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
|
105 |
+
self.norm2 = norm_layer(dim_self)
|
106 |
+
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)
|
107 |
+
|
108 |
+
|
109 |
+
class Transformer(nn.Module):
|
110 |
+
def forward_with_attention(self, x, y=None, mask=None):
|
111 |
+
attentions = []
|
112 |
+
for layer in self.layers:
|
113 |
+
x, att = layer.forward_with_attention(x, y, mask)
|
114 |
+
attentions.append(att)
|
115 |
+
|
116 |
+
return x, attentions
|
117 |
+
|
118 |
+
def forward(self, x, y=None, mask=None):
|
119 |
+
for i, layer in enumerate(self.layers):
|
120 |
+
if i % 2 == 0 and self.enc_dec:
|
121 |
+
x = layer(x, y)
|
122 |
+
elif self.enc_dec:
|
123 |
+
x = layer(x, x, mask)
|
124 |
+
else:
|
125 |
+
x = layer(x, y, mask)
|
126 |
+
return x
|
127 |
+
|
128 |
+
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
|
129 |
+
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False):
|
130 |
+
super(Transformer, self).__init__()
|
131 |
+
dim_ref = dim_ref if dim_ref is not None else dim_self
|
132 |
+
self.enc_dec = enc_dec
|
133 |
+
|
134 |
+
if enc_dec:
|
135 |
+
num_layers = num_layers * 2
|
136 |
+
|
137 |
+
layers = []
|
138 |
+
|
139 |
+
for i in range(num_layers):
|
140 |
+
if i % 2 == 0 and enc_dec:
|
141 |
+
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
|
142 |
+
elif enc_dec:
|
143 |
+
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
|
144 |
+
else:
|
145 |
+
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
|
146 |
+
|
147 |
+
self.layers = nn.ModuleList(layers)
|
148 |
+
|
149 |
+
|
150 |
+
class TransformerMapper(nn.Module):
|
151 |
+
def forward(self, x):
|
152 |
+
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
|
153 |
+
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape)
|
154 |
+
prefix = torch.cat((x, prefix), dim=1)
|
155 |
+
out = self.transformer(prefix)[:, self.clip_length:]
|
156 |
+
|
157 |
+
return out
|
158 |
+
|
159 |
+
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8):
|
160 |
+
super(TransformerMapper, self).__init__()
|
161 |
+
self.clip_length = clip_length
|
162 |
+
self.transformer = Transformer(dim_embedding, 8, num_layers)
|
163 |
+
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding)
|
164 |
+
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True)
|
165 |
+
|
166 |
+
class MLP(nn.Module):
|
167 |
+
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
|
168 |
+
super(MLP, self).__init__()
|
169 |
+
layers = []
|
170 |
+
for i in range(len(sizes) - 1):
|
171 |
+
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
|
172 |
+
if i < len(sizes) - 2:
|
173 |
+
layers.append(act())
|
174 |
+
self.model = nn.Sequential(*layers)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
177 |
+
return self.model(x)
|
178 |
+
|
179 |
+
|
180 |
+
class ClipCaptionModel(nn.Module):
|
181 |
+
def __init__(self, gpt, prefix_length: int, prefix_size: int = 768):
|
182 |
+
super(ClipCaptionModel, self).__init__()
|
183 |
+
|
184 |
+
self.prefix_length = prefix_length
|
185 |
+
clip_length = prefix_length
|
186 |
+
num_layers = 8
|
187 |
+
|
188 |
+
self.gpt = GPT2LMHeadModel.from_pretrained(gpt)
|
189 |
+
# self.gpt = freeze(self.gpt)
|
190 |
+
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
|
191 |
+
self.clip_project = TransformerMapper(prefix_size, self.gpt_embedding_size, prefix_length,
|
192 |
+
clip_length, num_layers)
|
193 |
+
|
194 |
+
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
|
195 |
+
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
|
196 |
+
|
197 |
+
def forward(self, tokens: torch.Tensor, prefix: torch.Tensor,
|
198 |
+
mask: Optional[torch.Tensor] = None,
|
199 |
+
labels: Optional[torch.Tensor] = None):
|
200 |
+
embedding_text = self.gpt.transformer.wte(tokens)
|
201 |
+
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
|
202 |
+
|
203 |
+
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
|
204 |
+
|
205 |
+
if labels is not None:
|
206 |
+
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
|
207 |
+
labels = torch.cat((dummy_token, tokens), dim=1)
|
208 |
+
|
209 |
+
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
|
210 |
+
|
211 |
+
return out
|
212 |
+
|
213 |
+
|
214 |
+
class ClipCaptionPrefix(ClipCaptionModel):
|
215 |
+
def parameters(self, recurse: bool = True):
|
216 |
+
return self.clip_project.parameters()
|
217 |
+
|
218 |
+
def train(self, mode: bool = True):
|
219 |
+
super(ClipCaptionPrefix, self).train(mode)
|
220 |
+
self.gpt.eval()
|
221 |
+
|
222 |
+
return self
|
transformer_clip_gpt-007.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1ea7b66ea0f3e84102e9d8d1fbf744ecad61ba6653af4702d0ca668c888bfed
|
3 |
+
size 770490716
|