Spaces:
Running
Running
Upload models/blip_nlvr.py
Browse files- models/blip_nlvr.py +103 -0
models/blip_nlvr.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.med import BertConfig
|
2 |
+
from models.nlvr_encoder import BertModel
|
3 |
+
from models.vit import interpolate_pos_embed
|
4 |
+
from models.blip import create_vit, init_tokenizer, is_url
|
5 |
+
|
6 |
+
from timm.models.hub import download_cached_file
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from transformers import BertTokenizer
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
class BLIP_NLVR(nn.Module):
|
15 |
+
def __init__(self,
|
16 |
+
med_config = 'configs/med_config.json',
|
17 |
+
image_size = 480,
|
18 |
+
vit = 'base',
|
19 |
+
vit_grad_ckpt = False,
|
20 |
+
vit_ckpt_layer = 0,
|
21 |
+
):
|
22 |
+
"""
|
23 |
+
Args:
|
24 |
+
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
25 |
+
image_size (int): input image size
|
26 |
+
vit (str): model size of vision transformer
|
27 |
+
"""
|
28 |
+
super().__init__()
|
29 |
+
|
30 |
+
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
|
31 |
+
self.tokenizer = init_tokenizer()
|
32 |
+
med_config = BertConfig.from_json_file(med_config)
|
33 |
+
med_config.encoder_width = vision_width
|
34 |
+
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
|
35 |
+
|
36 |
+
self.cls_head = nn.Sequential(
|
37 |
+
nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
|
38 |
+
nn.ReLU(),
|
39 |
+
nn.Linear(self.text_encoder.config.hidden_size, 2)
|
40 |
+
)
|
41 |
+
|
42 |
+
def forward(self, image, text, targets, train=True):
|
43 |
+
|
44 |
+
image_embeds = self.visual_encoder(image)
|
45 |
+
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
|
46 |
+
image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
|
47 |
+
|
48 |
+
text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device)
|
49 |
+
text.input_ids[:,0] = self.tokenizer.enc_token_id
|
50 |
+
|
51 |
+
output = self.text_encoder(text.input_ids,
|
52 |
+
attention_mask = text.attention_mask,
|
53 |
+
encoder_hidden_states = [image0_embeds,image1_embeds],
|
54 |
+
encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
|
55 |
+
image_atts[image0_embeds.size(0):]],
|
56 |
+
return_dict = True,
|
57 |
+
)
|
58 |
+
hidden_state = output.last_hidden_state[:,0,:]
|
59 |
+
prediction = self.cls_head(hidden_state)
|
60 |
+
|
61 |
+
if train:
|
62 |
+
loss = F.cross_entropy(prediction, targets)
|
63 |
+
return loss
|
64 |
+
else:
|
65 |
+
return prediction
|
66 |
+
|
67 |
+
def blip_nlvr(pretrained='',**kwargs):
|
68 |
+
model = BLIP_NLVR(**kwargs)
|
69 |
+
if pretrained:
|
70 |
+
model,msg = load_checkpoint(model,pretrained)
|
71 |
+
print("missing keys:")
|
72 |
+
print(msg.missing_keys)
|
73 |
+
return model
|
74 |
+
|
75 |
+
|
76 |
+
def load_checkpoint(model,url_or_filename):
|
77 |
+
if is_url(url_or_filename):
|
78 |
+
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
|
79 |
+
checkpoint = torch.load(cached_file, map_location='cpu')
|
80 |
+
elif os.path.isfile(url_or_filename):
|
81 |
+
checkpoint = torch.load(url_or_filename, map_location='cpu')
|
82 |
+
else:
|
83 |
+
raise RuntimeError('checkpoint url or path is invalid')
|
84 |
+
state_dict = checkpoint['model']
|
85 |
+
|
86 |
+
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
|
87 |
+
|
88 |
+
for key in list(state_dict.keys()):
|
89 |
+
if 'crossattention.self.' in key:
|
90 |
+
new_key0 = key.replace('self','self0')
|
91 |
+
new_key1 = key.replace('self','self1')
|
92 |
+
state_dict[new_key0] = state_dict[key]
|
93 |
+
state_dict[new_key1] = state_dict[key]
|
94 |
+
elif 'crossattention.output.dense.' in key:
|
95 |
+
new_key0 = key.replace('dense','dense0')
|
96 |
+
new_key1 = key.replace('dense','dense1')
|
97 |
+
state_dict[new_key0] = state_dict[key]
|
98 |
+
state_dict[new_key1] = state_dict[key]
|
99 |
+
|
100 |
+
msg = model.load_state_dict(state_dict,strict=False)
|
101 |
+
print('load checkpoint from %s'%url_or_filename)
|
102 |
+
return model,msg
|
103 |
+
|