Spaces:
Running
Running
import os | |
import json | |
from torch.utils.data import Dataset | |
from torchvision.datasets.utils import download_url | |
from PIL import Image | |
from data.utils import pre_caption | |
class flickr30k_train(Dataset): | |
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''): | |
''' | |
image_root (string): Root directory of images (e.g. flickr30k/) | |
ann_root (string): directory to store the annotation file | |
''' | |
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_train.json' | |
filename = 'flickr30k_train.json' | |
download_url(url,ann_root) | |
self.annotation = json.load(open(os.path.join(ann_root,filename),'r')) | |
self.transform = transform | |
self.image_root = image_root | |
self.max_words = max_words | |
self.prompt = prompt | |
self.img_ids = {} | |
n = 0 | |
for ann in self.annotation: | |
img_id = ann['image_id'] | |
if img_id not in self.img_ids.keys(): | |
self.img_ids[img_id] = n | |
n += 1 | |
def __len__(self): | |
return len(self.annotation) | |
def __getitem__(self, index): | |
ann = self.annotation[index] | |
image_path = os.path.join(self.image_root,ann['image']) | |
image = Image.open(image_path).convert('RGB') | |
image = self.transform(image) | |
caption = self.prompt+pre_caption(ann['caption'], self.max_words) | |
return image, caption, self.img_ids[ann['image_id']] | |
class flickr30k_retrieval_eval(Dataset): | |
def __init__(self, transform, image_root, ann_root, split, max_words=30): | |
''' | |
image_root (string): Root directory of images (e.g. flickr30k/) | |
ann_root (string): directory to store the annotation file | |
split (string): val or test | |
''' | |
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_val.json', | |
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/flickr30k_test.json'} | |
filenames = {'val':'flickr30k_val.json','test':'flickr30k_test.json'} | |
download_url(urls[split],ann_root) | |
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r')) | |
self.transform = transform | |
self.image_root = image_root | |
self.text = [] | |
self.image = [] | |
self.txt2img = {} | |
self.img2txt = {} | |
txt_id = 0 | |
for img_id, ann in enumerate(self.annotation): | |
self.image.append(ann['image']) | |
self.img2txt[img_id] = [] | |
for i, caption in enumerate(ann['caption']): | |
self.text.append(pre_caption(caption,max_words)) | |
self.img2txt[img_id].append(txt_id) | |
self.txt2img[txt_id] = img_id | |
txt_id += 1 | |
def __len__(self): | |
return len(self.annotation) | |
def __getitem__(self, index): | |
image_path = os.path.join(self.image_root, self.annotation[index]['image']) | |
image = Image.open(image_path).convert('RGB') | |
image = self.transform(image) | |
return image, index |