Spaces:
doevent
/
Running on Zero

ohayonguy commited on
Commit
ad47941
·
1 Parent(s): 917533b

improved description

Browse files
Files changed (1) hide show
  1. app.py +38 -7
app.py CHANGED
@@ -3,6 +3,7 @@ if os.getenv('SPACES_ZERO_GPU') == "true":
3
  os.environ['SPACES_ZERO_GPU'] = "1"
4
  os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
5
  import spaces
 
6
  import cv2
7
  import gradio as gr
8
  import torch
@@ -61,16 +62,23 @@ def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, dev
61
  def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
62
  face_helper.clean_all()
63
 
64
- if has_aligned: # the inputs are already aligned
65
- img = cv2.resize(img, (512, 512))
 
 
 
 
66
  face_helper.cropped_faces = [img]
67
  else:
68
  face_helper.read_image(img)
69
- face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
70
- # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
71
- # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
 
 
72
  # align and warp each face
73
  face_helper.align_warp_face()
 
74
  # face restoration
75
  for cropped_face in face_helper.cropped_faces:
76
  # prepare data
@@ -96,7 +104,7 @@ def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face
96
 
97
  face_helper.get_inverse_affine(None)
98
  # paste each restored face to the input image
99
- restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img)
100
  return face_helper.cropped_faces, face_helper.restored_faces, restored_img
101
  else:
102
  return face_helper.cropped_faces, face_helper.restored_faces, None
@@ -161,6 +169,28 @@ You may use this demo to enhance the quality of any image which contains faces.
161
  <b>NOTE</b>: Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
162
  """
163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  css = r"""
165
  """
166
 
@@ -175,7 +205,8 @@ demo = gr.Interface(
175
  gr.File(label="Download the output image")
176
  ],
177
  title=title,
178
- description=description
 
179
  )
180
 
181
 
 
3
  os.environ['SPACES_ZERO_GPU'] = "1"
4
  os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
5
  import spaces
6
+ from facelib.utils.misc import is_gray
7
  import cv2
8
  import gradio as gr
9
  import torch
 
62
  def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
63
  face_helper.clean_all()
64
 
65
+ if has_aligned:
66
+ # the input faces are already cropped and aligned
67
+ img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
68
+ face_helper.is_gray = is_gray(img, threshold=5)
69
+ if face_helper.is_gray:
70
+ print('\tgrayscale input: True')
71
  face_helper.cropped_faces = [img]
72
  else:
73
  face_helper.read_image(img)
74
+ # get face landmarks for each face
75
+ num_det_faces = face_helper.get_face_landmarks_5(
76
+ only_center_face=only_center_face, resize=640, eye_dist_threshold=5
77
+ )
78
+ print(f'\tdetect {num_det_faces} faces')
79
  # align and warp each face
80
  face_helper.align_warp_face()
81
+
82
  # face restoration
83
  for cropped_face in face_helper.cropped_faces:
84
  # prepare data
 
104
 
105
  face_helper.get_inverse_affine(None)
106
  # paste each restored face to the input image
107
+ restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=False)
108
  return face_helper.cropped_faces, face_helper.restored_faces, restored_img
109
  else:
110
  return face_helper.cropped_faces, face_helper.restored_faces, None
 
169
  <b>NOTE</b>: Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
170
  """
171
 
172
+
173
+ article = r"""
174
+ If you find our work useful, please help to ⭐ our <a href='https://github.com/ohayonguy/PMRF' target='_blank'>GitHub repository</a>. Thanks!
175
+ [![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF)
176
+ ---
177
+ 📝 **Citation**
178
+ If our work is useful for your research, please consider citing:
179
+ ```bibtex
180
+ @article{ohayon2024pmrf,
181
+ author = {Guy Ohayon and Tomer Michaeli and Michael Elad},
182
+ title = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration},
183
+ journal = {arXiv preprint arXiv:2410.00418},
184
+ year = {2024},
185
+ url = {https://arxiv.org/abs/2410.00418}
186
+ }
187
+ ```
188
+ 📋 **License**
189
+ This project is released under the <a rel="license" href="https://github.com/ohayonguy/PMRF/blob/master/LICENSE">MIT license</a>.
190
+ Redistribution and use for non-commercial purposes should follow this license.
191
+ 📧 **Contact**
192
+ If you have any questions, please feel free to contact me at <b>guyoep@gmail.com</b>.
193
+ """
194
  css = r"""
195
  """
196
 
 
205
  gr.File(label="Download the output image")
206
  ],
207
  title=title,
208
+ description=description,
209
+ article=article,
210
  )
211
 
212