Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel, FluxPipeline | |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
from huggingface_hub import hf_hub_download | |
import os | |
token_hf = os.environ["HF_TOKEN"] | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype) | |
# pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) | |
# pipe.fuse_lora(lora_scale=0.125) | |
# pipe.to(device="cuda", dtype=dtype) | |
# pipe = FluxPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=torch.bfloat16).to(device) | |
model_id = "black-forest-labs/FLUX.1-dev" | |
adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha" | |
pipe = FluxPipeline.from_pretrained( | |
model_id, | |
torch_dtype=dtype | |
) | |
pipe.to(device) | |
pipe.load_lora_weights(adapter_id) | |
pipe.fuse_lora() | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=8, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt = prompt, | |
# width = width, | |
# height = height, | |
# num_inference_steps = num_inference_steps, | |
# generator = generator, | |
# guidance_scale=guidance_scale | |
# ).images[0] | |
image = pipe(prompt=prompt, | |
num_inference_steps = num_inference_steps, | |
height=height, | |
width=width, | |
max_sequence_length=256, | |
generator = generator, | |
guidance_scale=guidance_scale | |
).images[0] | |
return image, seed | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# [FLUX.1 [merged]](https://huggingface.co/sayakpaul/FLUX.1-merged) | |
Merge by [Sayak Paul](https://huggingface.co/sayakpaul) of 2 of the 12B param rectified flow transformers [FLUX.1 [dev]](https://huggingface.co/black-forest-labs/FLUX.1-dev) and [FLUX.1 [schnell]](https://huggingface.co/black-forest-labs/FLUX.1-schnell) by [Black Forest Labs](https://blackforestlabs.ai/) | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=4, | |
) | |
result = gr.Image(label="Result", show_label=False, format="png") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer, | |
inputs = [prompt], | |
outputs = [result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
demo.queue(default_concurrency_limit=10).launch(show_error=True) |