yinkiu602 commited on
Commit
cf4341b
1 Parent(s): 95c1a0a

misc: Change to use Azure OpenAI

Browse files
Files changed (2) hide show
  1. app.py +1 -1
  2. service_provider_config.py +12 -11
app.py CHANGED
@@ -38,7 +38,7 @@ MODEL_NAME = ChatbotVersion.CHATGPT_4O.value
38
 
39
  CHUNK_SIZE = 8191
40
  LLM, EMBED_MODEL = get_service_provider_config(
41
- service_provider=ServiceProvider.OPENAI, model_name=MODEL_NAME)
42
 
43
  # LLM = Ollama(model="llama3.1:latest", request_timeout=60.0, context_window=10000)
44
 
 
38
 
39
  CHUNK_SIZE = 8191
40
  LLM, EMBED_MODEL = get_service_provider_config(
41
+ service_provider=ServiceProvider.AZURE, model_name=MODEL_NAME)
42
 
43
  # LLM = Ollama(model="llama3.1:latest", request_timeout=60.0, context_window=10000)
44
 
service_provider_config.py CHANGED
@@ -1,7 +1,9 @@
 
 
1
  from dotenv import load_dotenv
2
  from llama_index.embeddings.openai import OpenAIEmbedding
3
  from llama_index.llms.openai import OpenAI
4
- from llama_index.embeddings.azure_openai import AzureOpenAI
5
  from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding
6
  from schemas import ServiceProvider, ChatbotVersion
7
 
@@ -9,21 +11,21 @@ load_dotenv()
9
 
10
  def get_service_provider_config(service_provider: ServiceProvider, model_name: str=ChatbotVersion.CHATGPT_35.value):
11
  if service_provider == ServiceProvider.AZURE:
12
- return get_azure_openai_config()
13
  if service_provider == ServiceProvider.OPENAI:
14
  llm = OpenAI(model=model_name)
15
  embed_model = OpenAIEmbedding()
16
  return llm, embed_model
17
 
18
-
19
- def get_azure_openai_config():
20
- api_key = "<api-key>"
21
- azure_endpoint = "https://<your-resource-name>.openai.azure.com/"
22
- api_version = "2023-07-01-preview"
23
 
24
  llm = AzureOpenAI(
25
- model="gpt-35-turbo-16k",
26
- deployment_name="my-custom-llm",
27
  api_key=api_key,
28
  azure_endpoint=azure_endpoint,
29
  api_version=api_version,
@@ -31,8 +33,7 @@ def get_azure_openai_config():
31
 
32
  # You need to deploy your own embedding model as well as your own chat completion model
33
  embed_model = AzureOpenAIEmbedding(
34
- model="text-embedding-ada-002",
35
- deployment_name="my-custom-embedding",
36
  api_key=api_key,
37
  azure_endpoint=azure_endpoint,
38
  api_version=api_version,
 
1
+ import os
2
+
3
  from dotenv import load_dotenv
4
  from llama_index.embeddings.openai import OpenAIEmbedding
5
  from llama_index.llms.openai import OpenAI
6
+ from llama_index.llms.azure_openai import AzureOpenAI
7
  from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding
8
  from schemas import ServiceProvider, ChatbotVersion
9
 
 
11
 
12
  def get_service_provider_config(service_provider: ServiceProvider, model_name: str=ChatbotVersion.CHATGPT_35.value):
13
  if service_provider == ServiceProvider.AZURE:
14
+ return get_azure_openai_config(model_name = model_name)
15
  if service_provider == ServiceProvider.OPENAI:
16
  llm = OpenAI(model=model_name)
17
  embed_model = OpenAIEmbedding()
18
  return llm, embed_model
19
 
20
+ # The engine name needs to be the same as the deployment name in Azure.
21
+ def get_azure_openai_config(model_name: str):
22
+ api_key = os.getenv("AZURE_OPENAI_API_KEY")
23
+ azure_endpoint = "https://awesumcare.openai.azure.com/"
24
+ api_version = "2024-10-01-preview"
25
 
26
  llm = AzureOpenAI(
27
+ engine=model_name,
28
+ model=model_name,
29
  api_key=api_key,
30
  azure_endpoint=azure_endpoint,
31
  api_version=api_version,
 
33
 
34
  # You need to deploy your own embedding model as well as your own chat completion model
35
  embed_model = AzureOpenAIEmbedding(
36
+ deployment_name="text-embedding-ada-002",
 
37
  api_key=api_key,
38
  azure_endpoint=azure_endpoint,
39
  api_version=api_version,