Spaces:
Running
Running
ray
commited on
Commit
•
4969145
1
Parent(s):
4efc36b
switch to load from vector store from qdrant cloud
Browse files- app.py +100 -21
- chatbot.py +28 -8
- qdrant.py +7 -2
- service_provider_config.py +2 -2
app.py
CHANGED
@@ -20,16 +20,21 @@ from llama_index import set_global_service_context
|
|
20 |
|
21 |
from service_provider_config import get_service_provider_config
|
22 |
|
23 |
-
|
24 |
# initial service setup
|
25 |
px.launch_app()
|
26 |
llama_index.set_global_handler("arize_phoenix")
|
27 |
-
|
28 |
-
load_dotenv()
|
29 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
CHUNK_SIZE = 1024
|
31 |
LLM, EMBED_MODEL = get_service_provider_config(
|
32 |
-
service_provider=ServiceProvider.OPENAI)
|
33 |
service_context = ServiceContext.from_defaults(
|
34 |
chunk_size=CHUNK_SIZE,
|
35 |
llm=LLM,
|
@@ -69,15 +74,15 @@ class AwesumIndexBuilder(IndexBuilder):
|
|
69 |
pipeline = IngestionPipeline(
|
70 |
transformations=[
|
71 |
SentenceSplitter(),
|
72 |
-
|
73 |
],
|
74 |
vector_store=self.vector_store,
|
75 |
)
|
76 |
-
pipeline.run(documents=self.documents)
|
77 |
self.index = VectorStoreIndex.from_vector_store(self.vector_store)
|
78 |
|
79 |
|
80 |
-
class
|
81 |
DENIED_ANSWER_PROMPT = ""
|
82 |
SYSTEM_PROMPT = ""
|
83 |
CHAT_EXAMPLES = [
|
@@ -126,13 +131,48 @@ class AwesumCareChatbot(Chatbot):
|
|
126 |
# text_qa_template=CHAT_TEXT_QA_PROMPT)
|
127 |
super()._setup_chat_engine()
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
# gpt-3.5-turbo-1106, gpt-4-1106-preview
|
131 |
-
awesum_chatbot =
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
|
138 |
def vote(data: gr.LikeData):
|
@@ -145,23 +185,62 @@ def vote(data: gr.LikeData):
|
|
145 |
chatbot = gr.Chatbot()
|
146 |
|
147 |
with gr.Blocks() as demo:
|
|
|
148 |
gr.Markdown("# Awesum Care demo")
|
149 |
|
150 |
-
with gr.
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
awesum_chatbot.stream_chat,
|
153 |
-
chatbot=chatbot,
|
154 |
examples=awesum_chatbot.CHAT_EXAMPLES,
|
155 |
)
|
156 |
chatbot.like(vote, None, None)
|
157 |
|
158 |
-
with gr.Tab("With Initial System Prompt (a.k.a. prompt wrapper)"):
|
159 |
-
gr.ChatInterface(
|
160 |
-
awesum_chatbot.predict_with_prompt_wrapper, examples=awesum_chatbot.CHAT_EXAMPLES)
|
161 |
|
162 |
with gr.Tab("Vanilla ChatGPT without modification"):
|
163 |
-
gr.ChatInterface(
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
demo.queue()
|
167 |
-
demo.launch()
|
|
|
20 |
|
21 |
from service_provider_config import get_service_provider_config
|
22 |
|
23 |
+
load_dotenv()
|
24 |
# initial service setup
|
25 |
px.launch_app()
|
26 |
llama_index.set_global_handler("arize_phoenix")
|
27 |
+
# llama_index.set_global_handler("wandb", run_args={"project": "llamaindex"})
|
|
|
28 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
29 |
+
|
30 |
+
IS_LOAD_FROM_VECTOR_STORE = True
|
31 |
+
VDB_COLLECTION_NAME = "demo-v0"
|
32 |
+
MODEL_NAME = ChatbotVersion.CHATGPT_35.value
|
33 |
+
|
34 |
+
|
35 |
CHUNK_SIZE = 1024
|
36 |
LLM, EMBED_MODEL = get_service_provider_config(
|
37 |
+
service_provider=ServiceProvider.OPENAI, model_name=MODEL_NAME)
|
38 |
service_context = ServiceContext.from_defaults(
|
39 |
chunk_size=CHUNK_SIZE,
|
40 |
llm=LLM,
|
|
|
74 |
pipeline = IngestionPipeline(
|
75 |
transformations=[
|
76 |
SentenceSplitter(),
|
77 |
+
self.embed_model,
|
78 |
],
|
79 |
vector_store=self.vector_store,
|
80 |
)
|
81 |
+
pipeline.run(documents=self.documents, show_progress=True)
|
82 |
self.index = VectorStoreIndex.from_vector_store(self.vector_store)
|
83 |
|
84 |
|
85 |
+
class AwesumCareToolChatbot(Chatbot):
|
86 |
DENIED_ANSWER_PROMPT = ""
|
87 |
SYSTEM_PROMPT = ""
|
88 |
CHAT_EXAMPLES = [
|
|
|
131 |
# text_qa_template=CHAT_TEXT_QA_PROMPT)
|
132 |
super()._setup_chat_engine()
|
133 |
|
134 |
+
class AweSumCareContextChatbot(AwesumCareToolChatbot):
|
135 |
+
def _setup_query_engine(self):
|
136 |
+
pass
|
137 |
+
def _setup_tools(self):
|
138 |
+
pass
|
139 |
+
def _setup_chat_engine(self):
|
140 |
+
self.chat_engine = self.index.as_chat_engine(
|
141 |
+
chat_mode=ChatMode.CONTEXT,
|
142 |
+
similarity_top_k=5,
|
143 |
+
text_qa_template=CHAT_TEXT_QA_PROMPT)
|
144 |
+
|
145 |
+
class AweSumCareSimpleChatbot(AwesumCareToolChatbot):
|
146 |
+
def _setup_query_engine(self):
|
147 |
+
pass
|
148 |
+
def _setup_tools(self):
|
149 |
+
pass
|
150 |
+
def _setup_chat_engine(self):
|
151 |
+
self.chat_engine = self.index.as_chat_engine(
|
152 |
+
chat_mode=ChatMode.SIMPLE)
|
153 |
+
|
154 |
+
model_name = MODEL_NAME
|
155 |
+
index_builder = AwesumIndexBuilder(vdb_collection_name=VDB_COLLECTION_NAME,
|
156 |
+
embed_model=EMBED_MODEL,
|
157 |
+
is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)
|
158 |
|
159 |
# gpt-3.5-turbo-1106, gpt-4-1106-preview
|
160 |
+
awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder)
|
161 |
+
awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
|
162 |
+
awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)
|
163 |
+
|
164 |
+
|
165 |
+
def service_setup(model_name):
|
166 |
+
CHUNK_SIZE = 1024
|
167 |
+
LLM, EMBED_MODEL = get_service_provider_config(
|
168 |
+
service_provider=ServiceProvider.OPENAI, model_name=model_name)
|
169 |
+
service_context = ServiceContext.from_defaults(
|
170 |
+
chunk_size=CHUNK_SIZE,
|
171 |
+
llm=LLM,
|
172 |
+
embed_model=EMBED_MODEL,
|
173 |
+
)
|
174 |
+
set_global_service_context(service_context)
|
175 |
+
return LLM, EMBED_MODEL
|
176 |
|
177 |
|
178 |
def vote(data: gr.LikeData):
|
|
|
185 |
chatbot = gr.Chatbot()
|
186 |
|
187 |
with gr.Blocks() as demo:
|
188 |
+
|
189 |
gr.Markdown("# Awesum Care demo")
|
190 |
|
191 |
+
# with gr.Row():
|
192 |
+
# model_selector = gr.Radio(
|
193 |
+
# value=ChatbotVersion.CHATGPT_35.value,
|
194 |
+
# choices=[ChatbotVersion.CHATGPT_35.value, ChatbotVersion.CHATGPT_4.value],
|
195 |
+
# label="Select Chatbot Model (To be implemented)"
|
196 |
+
# )
|
197 |
+
|
198 |
+
with gr.Tab("With context aware"):
|
199 |
+
context_interface = gr.ChatInterface(
|
200 |
+
awesum_chatbot_context.stream_chat,
|
201 |
+
examples=awesum_chatbot.CHAT_EXAMPLES,
|
202 |
+
)
|
203 |
+
chatbot.like(vote, None, None)
|
204 |
+
|
205 |
+
with gr.Tab("With function calling as tool to retrieve"):
|
206 |
+
function_call_interface = gr.ChatInterface(
|
207 |
awesum_chatbot.stream_chat,
|
|
|
208 |
examples=awesum_chatbot.CHAT_EXAMPLES,
|
209 |
)
|
210 |
chatbot.like(vote, None, None)
|
211 |
|
|
|
|
|
|
|
212 |
|
213 |
with gr.Tab("Vanilla ChatGPT without modification"):
|
214 |
+
vanilla_interface = gr.ChatInterface(
|
215 |
+
awesum_chatbot_simple.stream_chat,
|
216 |
+
examples=awesum_chatbot.CHAT_EXAMPLES)
|
217 |
+
|
218 |
+
# @model_selector.change(inputs=[model_selector, chatbot], outputs=[context_interface, function_call_interface, vanilla_interface])
|
219 |
+
# def switch_model(model_name, my_chatbot):
|
220 |
+
# print(model_name)
|
221 |
+
# print(my_chatbot.config())
|
222 |
+
# LLM, EMBED_MODEL = service_setup(model_name)
|
223 |
+
# # global awesum_chatbot, awesum_chatbot_context, awesum_chatbot_simple
|
224 |
+
# # Logic to switch models - create new instances of the chatbots with the selected model
|
225 |
+
# index_builder = AwesumIndexBuilder(vdb_collection_name=VDB_COLLECTION_NAME,
|
226 |
+
# embed_model=EMBED_MODEL,
|
227 |
+
# is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)
|
228 |
+
# awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder, llm=LLM)
|
229 |
+
# awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
|
230 |
+
# awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)
|
231 |
+
# # return awesum_chatbot.stream_chat, awesum_chatbot_context.stream_chat, awesum_chatbot_simple.stream_chat
|
232 |
+
|
233 |
+
# new_context_interface = gr.ChatInterface(
|
234 |
+
# awesum_chatbot_context.stream_chat,
|
235 |
+
# )
|
236 |
+
# new_function_call_interface = gr.ChatInterface(
|
237 |
+
# awesum_chatbot.stream_chat,
|
238 |
+
# )
|
239 |
+
# new_vanilla_interface = gr.ChatInterface(
|
240 |
+
# awesum_chatbot_simple.stream_chat,
|
241 |
+
# )
|
242 |
+
# return new_context_interface, new_function_call_interface, new_vanilla_interface
|
243 |
+
|
244 |
|
245 |
demo.queue()
|
246 |
+
demo.launch(share=False)
|
chatbot.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from enum import Enum
|
|
|
2 |
from typing import List
|
3 |
import os
|
4 |
import re
|
@@ -8,15 +9,16 @@ from openai import OpenAI
|
|
8 |
import phoenix as px
|
9 |
import llama_index
|
10 |
from llama_index import OpenAIEmbedding
|
11 |
-
from llama_index.llms import ChatMessage, MessageRole
|
12 |
|
13 |
load_dotenv()
|
14 |
|
15 |
|
16 |
class IndexBuilder:
|
17 |
-
def __init__(self, vdb_collection_name, is_load_from_vector_store=False):
|
18 |
self.documents = None
|
19 |
self.vdb_collection_name = vdb_collection_name
|
|
|
20 |
self.index = None
|
21 |
self.is_load_from_vector_store = is_load_from_vector_store
|
22 |
self.build_index()
|
@@ -52,9 +54,10 @@ class Chatbot:
|
|
52 |
DENIED_ANSWER_PROMPT = ""
|
53 |
CHAT_EXAMPLES = []
|
54 |
|
55 |
-
def __init__(self, model_name, index_builder: IndexBuilder):
|
56 |
self.model_name = model_name
|
57 |
self.index_builder = index_builder
|
|
|
58 |
|
59 |
self.documents = None
|
60 |
self.index = None
|
@@ -63,8 +66,23 @@ class Chatbot:
|
|
63 |
self.vector_store = None
|
64 |
self.tools = None
|
65 |
|
|
|
66 |
self._setup_chatbot()
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def _setup_chatbot(self):
|
69 |
# self._setup_observer()
|
70 |
self._setup_index()
|
@@ -97,8 +115,8 @@ class Chatbot:
|
|
97 |
print("Setup chat engine...")
|
98 |
|
99 |
def stream_chat(self, message, history):
|
100 |
-
|
101 |
-
|
102 |
response = self.chat_engine.stream_chat(
|
103 |
message, chat_history=self.convert_to_chat_messages(history)
|
104 |
)
|
@@ -145,15 +163,17 @@ class Chatbot:
|
|
145 |
{"role": "assistant", "content": assistant})
|
146 |
history_openai_format.append({"role": "user", "content": message})
|
147 |
|
148 |
-
import openai
|
149 |
-
print(openai.__version__)
|
150 |
stream = openai_client.chat.completions.create(
|
151 |
model=self.model_name,
|
152 |
messages=history_openai_format,
|
153 |
temperature=1.0,
|
154 |
stream=True)
|
|
|
|
|
155 |
for part in stream:
|
156 |
-
|
|
|
|
|
157 |
# partial_message = ""
|
158 |
# for chunk in response:
|
159 |
# if len(chunk["choices"][0]["delta"]) != 0:
|
|
|
1 |
from enum import Enum
|
2 |
+
import logging
|
3 |
from typing import List
|
4 |
import os
|
5 |
import re
|
|
|
9 |
import phoenix as px
|
10 |
import llama_index
|
11 |
from llama_index import OpenAIEmbedding
|
12 |
+
from llama_index.llms import ChatMessage, MessageRole
|
13 |
|
14 |
load_dotenv()
|
15 |
|
16 |
|
17 |
class IndexBuilder:
|
18 |
+
def __init__(self, vdb_collection_name, embed_model, is_load_from_vector_store=False):
|
19 |
self.documents = None
|
20 |
self.vdb_collection_name = vdb_collection_name
|
21 |
+
self.embed_model = embed_model
|
22 |
self.index = None
|
23 |
self.is_load_from_vector_store = is_load_from_vector_store
|
24 |
self.build_index()
|
|
|
54 |
DENIED_ANSWER_PROMPT = ""
|
55 |
CHAT_EXAMPLES = []
|
56 |
|
57 |
+
def __init__(self, model_name, index_builder: IndexBuilder, llm=None):
|
58 |
self.model_name = model_name
|
59 |
self.index_builder = index_builder
|
60 |
+
self.llm = llm
|
61 |
|
62 |
self.documents = None
|
63 |
self.index = None
|
|
|
66 |
self.vector_store = None
|
67 |
self.tools = None
|
68 |
|
69 |
+
self._setup_logger()
|
70 |
self._setup_chatbot()
|
71 |
|
72 |
+
|
73 |
+
def _setup_logger(self):
|
74 |
+
logs_dir = 'logs'
|
75 |
+
if not os.path.exists(logs_dir):
|
76 |
+
os.makedirs(logs_dir) # Step 3: Create logs directory
|
77 |
+
|
78 |
+
logging.basicConfig(
|
79 |
+
filename=os.path.join(logs_dir, 'chatbot.log'),
|
80 |
+
filemode='a',
|
81 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
82 |
+
level=logging.INFO
|
83 |
+
)
|
84 |
+
self.logger = logging.getLogger(__name__)
|
85 |
+
|
86 |
def _setup_chatbot(self):
|
87 |
# self._setup_observer()
|
88 |
self._setup_index()
|
|
|
115 |
print("Setup chat engine...")
|
116 |
|
117 |
def stream_chat(self, message, history):
|
118 |
+
self.logger.info(history)
|
119 |
+
self.logger.info(self.convert_to_chat_messages(history))
|
120 |
response = self.chat_engine.stream_chat(
|
121 |
message, chat_history=self.convert_to_chat_messages(history)
|
122 |
)
|
|
|
163 |
{"role": "assistant", "content": assistant})
|
164 |
history_openai_format.append({"role": "user", "content": message})
|
165 |
|
|
|
|
|
166 |
stream = openai_client.chat.completions.create(
|
167 |
model=self.model_name,
|
168 |
messages=history_openai_format,
|
169 |
temperature=1.0,
|
170 |
stream=True)
|
171 |
+
|
172 |
+
partial_message = ""
|
173 |
for part in stream:
|
174 |
+
partial_message += part.choices[0].delta.content or ""
|
175 |
+
yield partial_message
|
176 |
+
# yield part.choices[0].delta.content or ""
|
177 |
# partial_message = ""
|
178 |
# for chunk in response:
|
179 |
# if len(chunk["choices"][0]["delta"]) != 0:
|
qdrant.py
CHANGED
@@ -1,5 +1,10 @@
|
|
|
|
|
|
1 |
|
2 |
-
import qdrant_client
|
3 |
|
|
|
4 |
|
5 |
-
client =
|
|
|
|
|
|
|
|
1 |
+
# import qdrant_client
|
2 |
+
from qdrant_client import QdrantClient
|
3 |
|
|
|
4 |
|
5 |
+
# client = qdrant_client.QdrantClient(path="/tmp/total_qdrant/")
|
6 |
|
7 |
+
client = QdrantClient(
|
8 |
+
url="https://dc059edb-e5bc-43ff-bb72-756cc610d6d1.us-east4-0.gcp.cloud.qdrant.io",
|
9 |
+
api_key="th0__GAZkpGRP0QSL2QwB0g_vr0ATvY-sd2Gre5VBUk8-vExdsYsYQ"
|
10 |
+
)
|
service_provider_config.py
CHANGED
@@ -7,11 +7,11 @@ from schemas import ServiceProvider, ChatbotVersion
|
|
7 |
|
8 |
load_dotenv()
|
9 |
|
10 |
-
def get_service_provider_config(service_provider: ServiceProvider):
|
11 |
if service_provider == ServiceProvider.AZURE:
|
12 |
return get_azure_openai_config()
|
13 |
if service_provider == ServiceProvider.OPENAI:
|
14 |
-
llm = OpenAI(model=
|
15 |
embed_model = OpenAIEmbedding()
|
16 |
return llm, embed_model
|
17 |
|
|
|
7 |
|
8 |
load_dotenv()
|
9 |
|
10 |
+
def get_service_provider_config(service_provider: ServiceProvider, model_name: str=ChatbotVersion.CHATGPT_35.value):
|
11 |
if service_provider == ServiceProvider.AZURE:
|
12 |
return get_azure_openai_config()
|
13 |
if service_provider == ServiceProvider.OPENAI:
|
14 |
+
llm = OpenAI(model=model_name)
|
15 |
embed_model = OpenAIEmbedding()
|
16 |
return llm, embed_model
|
17 |
|