docparser's picture
Update app.py
9606b04 verified
import torch
import onnx
import onnxruntime as rt
from torchvision import transforms as T
from PIL import Image
from tokenizer_base import Tokenizer
import pathlib
import os
import gradio as gr
from huggingface_hub import Repository
model_file = "captcha.onnx"
img_size = (32,128)
charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
tokenizer_base = Tokenizer(charset)
def get_transform(img_size):
transforms = []
transforms.extend([
T.Resize(img_size, T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(0.5, 0.5)
])
return T.Compose(transforms)
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
def initialize_model(model_file):
transform = get_transform(img_size)
# Onnx model loading
onnx_model = onnx.load(model_file)
onnx.checker.check_model(onnx_model)
ort_session = rt.InferenceSession(model_file)
return transform,ort_session
def get_text(img_org):
# img_org = Image.open(image_path)
# Preprocess. Model expects a batch of images with shape: (B, C, H, W)
x = transform(img_org.convert('RGB')).unsqueeze(0)
# compute ONNX Runtime output prediction
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
logits = ort_session.run(None, ort_inputs)[0]
probs = torch.tensor(logits).softmax(-1)
preds, probs = tokenizer_base.decode(probs)
preds = preds[0]
print(preds)
return preds
transform,ort_session = initialize_model(model_file=model_file)
gr.Interface(
get_text,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(),
title="Text Captcha Reader",
examples=["8000.png","11JW29.png","2a8486.jpg","2nbcx.png",
"000679.png","000HU.png","00Uga.png.jpg","00bAQwhAZU.jpg",
"00h57kYf.jpg","0EoHdtVb.png","0JS21.png","0p98z.png","10010.png"]
).launch()
# if __name__ == "__main__":
# image_path = "8000.png"
# preds,probs = get_text(image_path)
# print(preds[0])