|
import os |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
import logging |
|
from tqdm import tqdm |
|
from einops import rearrange |
|
from transformers.cache_utils import Cache |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.nn.utils.parametrize as P |
|
from torch.nn.utils.parametrizations import weight_norm |
|
from transformers import LlamaModel, LlamaConfig |
|
|
|
|
|
class LlamaMLP(nn.Module): |
|
def __init__(self, hidden_size, intermediate_size): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = F.silu |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
class GPT_warpper(nn.Module): |
|
def __init__( |
|
self, |
|
gpt_config, |
|
num_audio_tokens, |
|
num_text_tokens, |
|
num_vq=4, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.logger = logging.getLogger(__name__) |
|
self.gpt = self.build_model(gpt_config) |
|
self.model_dim = self.gpt.config.hidden_size |
|
|
|
self.num_vq = num_vq |
|
self.emb_code = nn.ModuleList([nn.Embedding(num_audio_tokens, self.model_dim) for i in range(self.num_vq)]) |
|
self.emb_text = nn.Embedding(num_text_tokens, self.model_dim) |
|
self.head_text = weight_norm(nn.Linear(self.model_dim, num_text_tokens, bias=False), name='weight') |
|
self.head_code = nn.ModuleList([weight_norm(nn.Linear(self.model_dim, num_audio_tokens, bias=False), name='weight') for i in range(self.num_vq)]) |
|
|
|
def build_model(self, config): |
|
|
|
configuration = LlamaConfig(**config) |
|
model = LlamaModel(configuration) |
|
del model.embed_tokens |
|
|
|
return model |
|
|
|
def get_emb(self, input_ids, text_mask, **kwargs): |
|
|
|
emb_text = self.emb_text(input_ids[text_mask][:, 0]) |
|
|
|
emb_code = [self.emb_code[i](input_ids[~text_mask][:, i]) for i in range(self.num_vq)] |
|
emb_code = torch.stack(emb_code, 2).sum(2) |
|
|
|
emb = torch.zeros((input_ids.shape[:-1])+(emb_text.shape[-1],), device=emb_text.device, dtype=emb_text.dtype) |
|
emb[text_mask] = emb_text |
|
emb[~text_mask] = emb_code.to(emb.dtype) |
|
|
|
return emb |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs |
|
): |
|
|
|
|
|
has_static_cache = False |
|
if past_key_values is None: |
|
past_key_values = getattr(self.gpt.layers[0].self_attn, "past_key_value", None) |
|
has_static_cache = past_key_values is not None |
|
|
|
past_length = 0 |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() |
|
max_cache_length = ( |
|
torch.tensor(past_key_values.get_max_length(), device=input_ids.device) |
|
if past_key_values.get_max_length() is not None |
|
else None |
|
) |
|
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) |
|
|
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
|
|
|
|
|
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] |
|
if cache_position is None: |
|
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) |
|
else: |
|
cache_position = cache_position[-input_length:] |
|
|
|
if has_static_cache: |
|
past_key_values = None |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
def generate( |
|
self, |
|
emb, |
|
inputs_ids, |
|
temperature, |
|
eos_token, |
|
attention_mask = None, |
|
max_new_token = 2048, |
|
min_new_token = 0, |
|
LogitsWarpers = [], |
|
LogitsProcessors = [], |
|
infer_text=False, |
|
return_attn=False, |
|
return_hidden=False, |
|
): |
|
|
|
with torch.no_grad(): |
|
|
|
attentions = [] |
|
hiddens = [] |
|
|
|
start_idx, end_idx = inputs_ids.shape[1], torch.zeros(inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long) |
|
finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool() |
|
|
|
temperature = temperature[None].expand(inputs_ids.shape[0], -1) |
|
temperature = rearrange(temperature, "b n -> (b n) 1") |
|
|
|
attention_mask_cache = torch.ones((inputs_ids.shape[0], inputs_ids.shape[1]+max_new_token,), dtype=torch.bool, device=inputs_ids.device) |
|
if attention_mask is not None: |
|
attention_mask_cache[:, :attention_mask.shape[1]] = attention_mask |
|
|
|
for i in tqdm(range(max_new_token)): |
|
|
|
model_input = self.prepare_inputs_for_generation(inputs_ids, |
|
outputs.past_key_values if i!=0 else None, |
|
attention_mask_cache[:, :inputs_ids.shape[1]], use_cache=True) |
|
|
|
if i == 0: |
|
model_input['inputs_embeds'] = emb |
|
else: |
|
if infer_text: |
|
model_input['inputs_embeds'] = self.emb_text(model_input['input_ids'][:,:,0]) |
|
else: |
|
code_emb = [self.emb_code[i](model_input['input_ids'][:,:,i]) for i in range(self.num_vq)] |
|
model_input['inputs_embeds'] = torch.stack(code_emb, 3).sum(3) |
|
|
|
model_input['input_ids'] = None |
|
outputs = self.gpt.forward(**model_input, output_attentions=return_attn) |
|
attentions.append(outputs.attentions) |
|
hidden_states = outputs[0] |
|
if return_hidden: |
|
hiddens.append(hidden_states[:, -1]) |
|
|
|
with P.cached(): |
|
if infer_text: |
|
logits = self.head_text(hidden_states) |
|
else: |
|
logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3) |
|
|
|
logits = logits[:, -1].float() |
|
|
|
if not infer_text: |
|
logits = rearrange(logits, "b c n -> (b n) c") |
|
logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c") |
|
else: |
|
logits_token = inputs_ids[:, start_idx:, 0] |
|
|
|
logits = logits / temperature |
|
|
|
for logitsProcessors in LogitsProcessors: |
|
logits = logitsProcessors(logits_token, logits) |
|
|
|
for logitsWarpers in LogitsWarpers: |
|
logits = logitsWarpers(logits_token, logits) |
|
|
|
if i < min_new_token: |
|
logits[:, eos_token] = -torch.inf |
|
|
|
scores = F.softmax(logits, dim=-1) |
|
|
|
idx_next = torch.multinomial(scores, num_samples=1) |
|
|
|
if not infer_text: |
|
idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq) |
|
finish = finish | (idx_next == eos_token).any(1) |
|
inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(1)], 1) |
|
else: |
|
finish = finish | (idx_next == eos_token).any(1) |
|
inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(-1).expand(-1, -1, self.num_vq)], 1) |
|
|
|
end_idx = end_idx + (~finish).int() |
|
|
|
if finish.all(): |
|
break |
|
|
|
inputs_ids = [inputs_ids[idx, start_idx: start_idx+i] for idx, i in enumerate(end_idx.int())] |
|
inputs_ids = [i[:, 0] for i in inputs_ids] if infer_text else inputs_ids |
|
|
|
if return_hidden: |
|
hiddens = torch.stack(hiddens, 1) |
|
hiddens = [hiddens[idx, :i] for idx, i in enumerate(end_idx.int())] |
|
|
|
if not finish.all(): |
|
self.logger.warn(f'Incomplete result. hit max_new_token: {max_new_token}') |
|
|
|
return { |
|
'ids': inputs_ids, |
|
'attentions': attentions, |
|
'hiddens':hiddens, |
|
} |