doby4u's picture
webui origin
47442ee
raw
history blame
11.7 kB
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import logging
from tqdm import tqdm
from einops import rearrange
from transformers.cache_utils import Cache
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as P
from torch.nn.utils.parametrizations import weight_norm
from transformers import LlamaModel, LlamaConfig
class LlamaMLP(nn.Module):
def __init__(self, hidden_size, intermediate_size):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = F.silu
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class GPT_warpper(nn.Module):
def __init__(
self,
gpt_config,
num_audio_tokens,
num_text_tokens,
num_vq=4,
**kwargs,
):
super().__init__()
self.logger = logging.getLogger(__name__)
self.gpt = self.build_model(gpt_config)
self.model_dim = self.gpt.config.hidden_size
self.num_vq = num_vq
self.emb_code = nn.ModuleList([nn.Embedding(num_audio_tokens, self.model_dim) for i in range(self.num_vq)])
self.emb_text = nn.Embedding(num_text_tokens, self.model_dim)
self.head_text = weight_norm(nn.Linear(self.model_dim, num_text_tokens, bias=False), name='weight')
self.head_code = nn.ModuleList([weight_norm(nn.Linear(self.model_dim, num_audio_tokens, bias=False), name='weight') for i in range(self.num_vq)])
def build_model(self, config):
configuration = LlamaConfig(**config)
model = LlamaModel(configuration)
del model.embed_tokens
return model
def get_emb(self, input_ids, text_mask, **kwargs):
emb_text = self.emb_text(input_ids[text_mask][:, 0])
emb_code = [self.emb_code[i](input_ids[~text_mask][:, i]) for i in range(self.num_vq)]
emb_code = torch.stack(emb_code, 2).sum(2)
emb = torch.zeros((input_ids.shape[:-1])+(emb_text.shape[-1],), device=emb_text.device, dtype=emb_text.dtype)
emb[text_mask] = emb_text
emb[~text_mask] = emb_code.to(emb.dtype)
return emb
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, **kwargs
):
# With static cache, the `past_key_values` is None
# TODO joao: standardize interface for the different Cache classes and remove of this if
has_static_cache = False
if past_key_values is None:
past_key_values = getattr(self.gpt.layers[0].self_attn, "past_key_value", None)
has_static_cache = past_key_values is not None
past_length = 0
if past_key_values is not None:
if isinstance(past_key_values, Cache):
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
max_cache_length = (
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
if past_key_values.get_max_length() is not None
else None
)
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
# input)
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {"input_ids": input_ids.contiguous()}
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
if cache_position is None:
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
else:
cache_position = cache_position[-input_length:]
if has_static_cache:
past_key_values = None
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
def generate(
self,
emb,
inputs_ids,
temperature,
eos_token,
attention_mask = None,
max_new_token = 2048,
min_new_token = 0,
LogitsWarpers = [],
LogitsProcessors = [],
infer_text=False,
return_attn=False,
return_hidden=False,
):
with torch.no_grad():
attentions = []
hiddens = []
start_idx, end_idx = inputs_ids.shape[1], torch.zeros(inputs_ids.shape[0], device=inputs_ids.device, dtype=torch.long)
finish = torch.zeros(inputs_ids.shape[0], device=inputs_ids.device).bool()
temperature = temperature[None].expand(inputs_ids.shape[0], -1)
temperature = rearrange(temperature, "b n -> (b n) 1")
attention_mask_cache = torch.ones((inputs_ids.shape[0], inputs_ids.shape[1]+max_new_token,), dtype=torch.bool, device=inputs_ids.device)
if attention_mask is not None:
attention_mask_cache[:, :attention_mask.shape[1]] = attention_mask
for i in tqdm(range(max_new_token)):
model_input = self.prepare_inputs_for_generation(inputs_ids,
outputs.past_key_values if i!=0 else None,
attention_mask_cache[:, :inputs_ids.shape[1]], use_cache=True)
if i == 0:
model_input['inputs_embeds'] = emb
else:
if infer_text:
model_input['inputs_embeds'] = self.emb_text(model_input['input_ids'][:,:,0])
else:
code_emb = [self.emb_code[i](model_input['input_ids'][:,:,i]) for i in range(self.num_vq)]
model_input['inputs_embeds'] = torch.stack(code_emb, 3).sum(3)
model_input['input_ids'] = None
outputs = self.gpt.forward(**model_input, output_attentions=return_attn)
attentions.append(outputs.attentions)
hidden_states = outputs[0] # 🐻
if return_hidden:
hiddens.append(hidden_states[:, -1])
with P.cached():
if infer_text:
logits = self.head_text(hidden_states)
else:
logits = torch.stack([self.head_code[i](hidden_states) for i in range(self.num_vq)], 3)
logits = logits[:, -1].float()
if not infer_text:
logits = rearrange(logits, "b c n -> (b n) c")
logits_token = rearrange(inputs_ids[:, start_idx:], "b c n -> (b n) c")
else:
logits_token = inputs_ids[:, start_idx:, 0]
logits = logits / temperature
for logitsProcessors in LogitsProcessors:
logits = logitsProcessors(logits_token, logits)
for logitsWarpers in LogitsWarpers:
logits = logitsWarpers(logits_token, logits)
if i < min_new_token:
logits[:, eos_token] = -torch.inf
scores = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(scores, num_samples=1)
if not infer_text:
idx_next = rearrange(idx_next, "(b n) 1 -> b n", n=self.num_vq)
finish = finish | (idx_next == eos_token).any(1)
inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(1)], 1)
else:
finish = finish | (idx_next == eos_token).any(1)
inputs_ids = torch.cat([inputs_ids, idx_next.unsqueeze(-1).expand(-1, -1, self.num_vq)], 1)
end_idx = end_idx + (~finish).int()
if finish.all():
break
inputs_ids = [inputs_ids[idx, start_idx: start_idx+i] for idx, i in enumerate(end_idx.int())]
inputs_ids = [i[:, 0] for i in inputs_ids] if infer_text else inputs_ids
if return_hidden:
hiddens = torch.stack(hiddens, 1)
hiddens = [hiddens[idx, :i] for idx, i in enumerate(end_idx.int())]
if not finish.all():
self.logger.warn(f'Incomplete result. hit max_new_token: {max_new_token}')
return {
'ids': inputs_ids,
'attentions': attentions,
'hiddens':hiddens,
}