Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import colorsys
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import onnxruntime as ort
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from PIL import Image, ImageDraw
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def resize_with_aspect_ratio(image, size, interpolation=Image.BILINEAR):
|
| 13 |
+
"""Resizes an image while maintaining aspect ratio and pads it."""
|
| 14 |
+
original_width, original_height = image.size
|
| 15 |
+
ratio = min(size / original_width, size / original_height)
|
| 16 |
+
new_width = int(original_width * ratio)
|
| 17 |
+
new_height = int(original_height * ratio)
|
| 18 |
+
image = image.resize((new_width, new_height), interpolation)
|
| 19 |
+
|
| 20 |
+
# Create a new image with the desired size and paste the resized image onto it
|
| 21 |
+
new_image = Image.new("RGB", (size, size))
|
| 22 |
+
new_image.paste(image, ((size - new_width) // 2, (size - new_height) // 2))
|
| 23 |
+
return new_image, ratio, (size - new_width) // 2, (size - new_height) // 2
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def generate_colors(num_classes):
|
| 27 |
+
"""Generate a list of distinct colors for different classes."""
|
| 28 |
+
# Generate evenly spaced hues
|
| 29 |
+
hsv_tuples = [(x / num_classes, 0.8, 0.9) for x in range(num_classes)]
|
| 30 |
+
|
| 31 |
+
# Convert to RGB
|
| 32 |
+
colors = []
|
| 33 |
+
for hsv in hsv_tuples:
|
| 34 |
+
rgb = colorsys.hsv_to_rgb(*hsv)
|
| 35 |
+
# Convert to 0-255 range and to tuple
|
| 36 |
+
colors.append(tuple(int(255 * x) for x in rgb))
|
| 37 |
+
|
| 38 |
+
return colors
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def draw(images, labels, boxes, scores, ratios, paddings, thrh=0.4, class_names=None):
|
| 42 |
+
result_images = []
|
| 43 |
+
|
| 44 |
+
# Generate colors for classes
|
| 45 |
+
num_classes = (
|
| 46 |
+
len(class_names) if class_names else 91
|
| 47 |
+
) # Use length of class_names if available, otherwise default to COCO's 91 classes
|
| 48 |
+
colors = generate_colors(num_classes)
|
| 49 |
+
|
| 50 |
+
for i, im in enumerate(images):
|
| 51 |
+
draw = ImageDraw.Draw(im)
|
| 52 |
+
scr = scores[i]
|
| 53 |
+
lab = labels[i][scr > thrh]
|
| 54 |
+
box = boxes[i][scr > thrh]
|
| 55 |
+
scr = scr[scr > thrh]
|
| 56 |
+
|
| 57 |
+
ratio = ratios[i]
|
| 58 |
+
pad_w, pad_h = paddings[i]
|
| 59 |
+
|
| 60 |
+
for lbl, bb in zip(lab, box):
|
| 61 |
+
# Get color for this class
|
| 62 |
+
class_idx = int(lbl)
|
| 63 |
+
color = colors[class_idx % len(colors)]
|
| 64 |
+
|
| 65 |
+
# Convert RGB to hex for PIL
|
| 66 |
+
hex_color = "#{:02x}{:02x}{:02x}".format(*color)
|
| 67 |
+
|
| 68 |
+
# Adjust bounding boxes according to the resizing and padding
|
| 69 |
+
bb = [
|
| 70 |
+
(bb[0] - pad_w) / ratio,
|
| 71 |
+
(bb[1] - pad_h) / ratio,
|
| 72 |
+
(bb[2] - pad_w) / ratio,
|
| 73 |
+
(bb[3] - pad_h) / ratio,
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
# Draw rectangle with class-specific color
|
| 77 |
+
draw.rectangle(bb, outline=hex_color, width=3)
|
| 78 |
+
|
| 79 |
+
# Use class name if available, otherwise use class index
|
| 80 |
+
if class_names and class_idx < len(class_names):
|
| 81 |
+
label_text = f"{class_names[class_idx]} {scr[lab == lbl][0]:.2f}"
|
| 82 |
+
else:
|
| 83 |
+
label_text = f"Class {class_idx} {scr[lab == lbl][0]:.2f}"
|
| 84 |
+
|
| 85 |
+
# Draw text background
|
| 86 |
+
text_size = draw.textbbox((0, 0), label_text, font=None)
|
| 87 |
+
text_width = text_size[2] - text_size[0]
|
| 88 |
+
text_height = text_size[3] - text_size[1]
|
| 89 |
+
|
| 90 |
+
# Draw text background rectangle
|
| 91 |
+
draw.rectangle(
|
| 92 |
+
[bb[0], bb[1] - text_height - 4, bb[0] + text_width + 4, bb[1]],
|
| 93 |
+
fill=hex_color,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Draw text in white or black depending on color brightness
|
| 97 |
+
brightness = (color[0] * 299 + color[1] * 587 + color[2] * 114) / 1000
|
| 98 |
+
text_color = "black" if brightness > 128 else "white"
|
| 99 |
+
|
| 100 |
+
# Draw text
|
| 101 |
+
draw.text(
|
| 102 |
+
(bb[0] + 2, bb[1] - text_height - 2), text=label_text, fill=text_color
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
result_images.append(im)
|
| 106 |
+
return result_images
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def load_model(model_path):
|
| 110 |
+
"""
|
| 111 |
+
Load an ONNX model for inference.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
model_path: Path to the ONNX model file
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
tuple: (session, error_message)
|
| 118 |
+
"""
|
| 119 |
+
providers = ["CPUExecutionProvider"]
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
sess = ort.InferenceSession(model_path, providers=providers)
|
| 123 |
+
print(f"Using device: {ort.get_device()}")
|
| 124 |
+
return sess, None
|
| 125 |
+
except Exception as e:
|
| 126 |
+
return None, f"Error creating inference session: {e}"
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def load_class_names(class_names_path):
|
| 130 |
+
"""
|
| 131 |
+
Load class names from a text file.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
class_names_path: Path to a text file with class names (one per line)
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
list: Class names or None if loading failed
|
| 138 |
+
"""
|
| 139 |
+
if not class_names_path or not os.path.exists(class_names_path):
|
| 140 |
+
return None
|
| 141 |
+
|
| 142 |
+
try:
|
| 143 |
+
with open(class_names_path, "r") as f:
|
| 144 |
+
class_names = [line.strip() for line in f.readlines()]
|
| 145 |
+
print(f"Loaded {len(class_names)} class names")
|
| 146 |
+
return class_names
|
| 147 |
+
except Exception as e:
|
| 148 |
+
print(f"Error loading class names: {e}")
|
| 149 |
+
return None
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def prepare_image(image):
|
| 153 |
+
"""
|
| 154 |
+
Prepare image for inference by converting to PIL and resizing.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
image: Input image (PIL or numpy array)
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
tuple: (resized_image, original_image, ratio, padding)
|
| 161 |
+
"""
|
| 162 |
+
# Convert to PIL image if needed
|
| 163 |
+
if not isinstance(image, Image.Image):
|
| 164 |
+
image = Image.fromarray(image).convert("RGB")
|
| 165 |
+
|
| 166 |
+
# Resize image while preserving aspect ratio
|
| 167 |
+
resized_image, ratio, pad_w, pad_h = resize_with_aspect_ratio(image, 640)
|
| 168 |
+
|
| 169 |
+
return resized_image, image, ratio, (pad_w, pad_h)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def run_inference(session, image):
|
| 173 |
+
"""
|
| 174 |
+
Run inference on the prepared image.
|
| 175 |
+
|
| 176 |
+
Args:
|
| 177 |
+
session: ONNX runtime session
|
| 178 |
+
image: Prepared PIL image
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
tuple: (labels, boxes, scores)
|
| 182 |
+
"""
|
| 183 |
+
# Get original image dimensions
|
| 184 |
+
orig_height, orig_width = image.size[1], image.size[0]
|
| 185 |
+
# Convert to int64 as expected by the model
|
| 186 |
+
orig_size = np.array([[orig_height, orig_width]], dtype=np.int64)
|
| 187 |
+
|
| 188 |
+
# Convert PIL image to numpy array and normalize to 0-1 range
|
| 189 |
+
im_data = np.array(image, dtype=np.float32) / 255.0
|
| 190 |
+
# Transpose from HWC to CHW format
|
| 191 |
+
im_data = im_data.transpose(2, 0, 1)
|
| 192 |
+
# Add batch dimension
|
| 193 |
+
im_data = np.expand_dims(im_data, axis=0)
|
| 194 |
+
|
| 195 |
+
output = session.run(
|
| 196 |
+
output_names=None,
|
| 197 |
+
input_feed={"images": im_data, "orig_target_sizes": orig_size},
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
return output # labels, boxes, scores
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def count_objects(labels, scores, confidence_threshold, class_names):
|
| 204 |
+
"""
|
| 205 |
+
Count detected objects by class.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
labels: Detection labels
|
| 209 |
+
scores: Detection confidence scores
|
| 210 |
+
confidence_threshold: Minimum confidence threshold
|
| 211 |
+
class_names: List of class names
|
| 212 |
+
|
| 213 |
+
Returns:
|
| 214 |
+
dict: Counts of objects by class
|
| 215 |
+
"""
|
| 216 |
+
object_counts = {}
|
| 217 |
+
for i, score_batch in enumerate(scores):
|
| 218 |
+
for j, score in enumerate(score_batch):
|
| 219 |
+
if score >= confidence_threshold:
|
| 220 |
+
label = labels[i][j]
|
| 221 |
+
class_name = (
|
| 222 |
+
class_names[label]
|
| 223 |
+
if class_names and label < len(class_names)
|
| 224 |
+
else f"Class {label}"
|
| 225 |
+
)
|
| 226 |
+
object_counts[class_name] = object_counts.get(class_name, 0) + 1
|
| 227 |
+
|
| 228 |
+
return object_counts
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def create_status_message(object_counts):
|
| 232 |
+
"""
|
| 233 |
+
Create a status message with object counts.
|
| 234 |
+
|
| 235 |
+
Args:
|
| 236 |
+
object_counts: Dictionary of object counts by class
|
| 237 |
+
|
| 238 |
+
Returns:
|
| 239 |
+
str: Formatted status message
|
| 240 |
+
"""
|
| 241 |
+
status_message = "Detection completed successfully\n\nObjects detected:"
|
| 242 |
+
if object_counts:
|
| 243 |
+
for class_name, count in object_counts.items():
|
| 244 |
+
status_message += f"\n- {class_name}: {count}"
|
| 245 |
+
else:
|
| 246 |
+
status_message += "\n- No objects detected above confidence threshold"
|
| 247 |
+
|
| 248 |
+
return status_message
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def create_bar_data(object_counts):
|
| 252 |
+
"""
|
| 253 |
+
Create data for the bar plot visualization.
|
| 254 |
+
|
| 255 |
+
Args:
|
| 256 |
+
object_counts: Dictionary of object counts by class
|
| 257 |
+
|
| 258 |
+
Returns:
|
| 259 |
+
DataFrame: Data for bar plot
|
| 260 |
+
"""
|
| 261 |
+
if object_counts:
|
| 262 |
+
# Sort by count in descending order
|
| 263 |
+
sorted_counts = sorted(object_counts.items(), key=lambda x: x[1], reverse=True)
|
| 264 |
+
class_names_list = [item[0] for item in sorted_counts]
|
| 265 |
+
counts_list = [item[1] for item in sorted_counts]
|
| 266 |
+
# Create a pandas DataFrame for the bar plot
|
| 267 |
+
return pd.DataFrame({"Class": class_names_list, "Count": counts_list})
|
| 268 |
+
else:
|
| 269 |
+
return pd.DataFrame({"Class": ["No objects detected"], "Count": [0]})
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def predict(image, model_path, class_names_path, confidence_threshold):
|
| 273 |
+
"""
|
| 274 |
+
Main prediction function that orchestrates the detection pipeline.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
image: Input image
|
| 278 |
+
model_path: Path to ONNX model
|
| 279 |
+
class_names_path: Path to class names file
|
| 280 |
+
confidence_threshold: Detection confidence threshold
|
| 281 |
+
|
| 282 |
+
Returns:
|
| 283 |
+
tuple: (result_image, status_message, bar_data)
|
| 284 |
+
"""
|
| 285 |
+
# Load model
|
| 286 |
+
session, error = load_model(model_path)
|
| 287 |
+
if error:
|
| 288 |
+
return None, error, None
|
| 289 |
+
|
| 290 |
+
# Load class names
|
| 291 |
+
class_names = load_class_names(class_names_path)
|
| 292 |
+
|
| 293 |
+
try:
|
| 294 |
+
# Prepare image
|
| 295 |
+
resized_image, original_image, ratio, padding = prepare_image(image)
|
| 296 |
+
|
| 297 |
+
# Run inference
|
| 298 |
+
labels, boxes, scores = run_inference(session, resized_image)
|
| 299 |
+
|
| 300 |
+
# Draw detections on the original image
|
| 301 |
+
result_images = draw(
|
| 302 |
+
[original_image],
|
| 303 |
+
labels,
|
| 304 |
+
boxes,
|
| 305 |
+
scores,
|
| 306 |
+
[ratio],
|
| 307 |
+
[padding],
|
| 308 |
+
thrh=confidence_threshold,
|
| 309 |
+
class_names=class_names,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Count objects by class
|
| 313 |
+
object_counts = count_objects(labels, scores, confidence_threshold, class_names)
|
| 314 |
+
|
| 315 |
+
# Create status message
|
| 316 |
+
status_message = create_status_message(object_counts)
|
| 317 |
+
|
| 318 |
+
# Create bar plot data
|
| 319 |
+
bar_data = create_bar_data(object_counts)
|
| 320 |
+
|
| 321 |
+
return result_images[0], status_message, bar_data
|
| 322 |
+
except Exception as e:
|
| 323 |
+
return None, f"Error during inference: {e}", None
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
def build_interface(model_path, class_names_path):
|
| 327 |
+
"""
|
| 328 |
+
Build the Gradio interface components.
|
| 329 |
+
|
| 330 |
+
Args:
|
| 331 |
+
model_path: Path to the ONNX model
|
| 332 |
+
class_names_path: Path to the class names file
|
| 333 |
+
|
| 334 |
+
Returns:
|
| 335 |
+
gr.Blocks: The Gradio demo interface
|
| 336 |
+
"""
|
| 337 |
+
with gr.Blocks(title="Blood Cell Detection") as demo:
|
| 338 |
+
gr.Markdown("# Blood Cell Detection")
|
| 339 |
+
gr.Markdown("Upload an image to detect blood cells. The model can detect 3 types of blood cells: red blood cells, white blood cells and platelets.")
|
| 340 |
+
|
| 341 |
+
with gr.Row():
|
| 342 |
+
with gr.Column():
|
| 343 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
| 344 |
+
confidence = gr.Slider(
|
| 345 |
+
minimum=0.1,
|
| 346 |
+
maximum=1.0,
|
| 347 |
+
value=0.4,
|
| 348 |
+
step=0.05,
|
| 349 |
+
label="Confidence Threshold",
|
| 350 |
+
)
|
| 351 |
+
submit_btn = gr.Button("Detect Objects")
|
| 352 |
+
|
| 353 |
+
with gr.Column():
|
| 354 |
+
output_image = gr.Image(type="pil", label="Detection Result")
|
| 355 |
+
|
| 356 |
+
with gr.Row():
|
| 357 |
+
output_message = gr.Textbox(label="Status")
|
| 358 |
+
|
| 359 |
+
count_plot = gr.BarPlot(
|
| 360 |
+
y="Class",
|
| 361 |
+
x="Count",
|
| 362 |
+
title="Object Counts",
|
| 363 |
+
tooltip=["Class", "Count"],
|
| 364 |
+
height=300,
|
| 365 |
+
orientation="h",
|
| 366 |
+
label_title="Object Counts",
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
# Set up the click event inside the Blocks context
|
| 370 |
+
submit_btn.click(
|
| 371 |
+
fn=predict,
|
| 372 |
+
inputs=[
|
| 373 |
+
input_image,
|
| 374 |
+
gr.State(model_path),
|
| 375 |
+
gr.State(class_names_path),
|
| 376 |
+
confidence,
|
| 377 |
+
],
|
| 378 |
+
outputs=[output_image, output_message, count_plot],
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
return demo
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def launch_demo(args):
|
| 385 |
+
"""
|
| 386 |
+
Launch the Gradio demo with the specified arguments.
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
args: Command-line arguments
|
| 390 |
+
"""
|
| 391 |
+
demo = build_interface(args.onnx, args.class_names)
|
| 392 |
+
|
| 393 |
+
# Launch the demo
|
| 394 |
+
demo.launch(share=args.share)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
if __name__ == "__main__":
|
| 398 |
+
parser = argparse.ArgumentParser(
|
| 399 |
+
description="Gradio demo for object detection with ONNX Runtime"
|
| 400 |
+
)
|
| 401 |
+
parser.add_argument(
|
| 402 |
+
"--onnx", type=str, required=True, help="Path to the ONNX model file"
|
| 403 |
+
)
|
| 404 |
+
parser.add_argument(
|
| 405 |
+
"--class-names",
|
| 406 |
+
type=str,
|
| 407 |
+
help="Path to a text file with class names (one per line)",
|
| 408 |
+
)
|
| 409 |
+
parser.add_argument(
|
| 410 |
+
"--share", action="store_true", help="Create a shareable link for the demo"
|
| 411 |
+
)
|
| 412 |
+
args = parser.parse_args()
|
| 413 |
+
|
| 414 |
+
launch_demo(args)
|