Spaces:
Runtime error
Runtime error
| import torch | |
| from PIL import Image | |
| from typing import Tuple, List | |
| import numpy as np | |
| import torch.nn as nn | |
| import os | |
| from transformers import AutoTokenizer, GemmaTokenizerFast | |
| from safetensors import safe_open | |
| import json | |
| from pathlib import Path | |
| from models.paligemma import PaliGemmaConfig, PaliGemma | |
| def load_model(model_dir: str): | |
| with open(os.path.join(model_dir, 'config.json'), "r") as f: | |
| model_config = json.loads(f.read()) | |
| config = PaliGemmaConfig.from_dict(model_config) | |
| safetensor_files = Path(model_dir).glob("*.safetensors") | |
| weights = {} | |
| for file in safetensor_files: | |
| with safe_open(file, framework='pt', device="cpu") as f: | |
| for key in f.keys(): | |
| weights[key] = f.get_tensor(key) | |
| model = PaliGemma(config) | |
| model.load_state_dict(weights, strict=False) | |
| model.tie_weights() | |
| return model | |
| def load_tokenizer(tokenizer_dir: str): | |
| tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, padding_side='right') | |
| return tokenizer | |
| def freeze_model(model: nn.Module): | |
| for param in model.parameters(): | |
| param.requires_grad = False | |
| return model |