RAG-ColPali / models /gemma.py
Huy
First commit
d8bb2be
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.parametrize as parametrize
from dataclasses import dataclass
from typing import Optional, List
import math
import torch.utils.checkpoint as checkpoint
@dataclass
class GemmaConfig:
hidden_size: int = 2048
intermediate_size: int = 16384
num_attention_heads: int = 8
num_hidden_layers: int = 18
num_image_tokens: int = 256
num_key_value_heads: int = 1
vocab_size: int = 257216
norm_eps: float = 1e-6
max_seq_len: int = 8192
attention_dropout: float = 0.0
use_lora: bool = False
training: bool = False
@classmethod
def from_dict(cls, data):
return cls(
hidden_size = data['hidden_size'],
intermediate_size = data['intermediate_size'],
num_attention_heads = data['num_attention_heads'],
num_hidden_layers = data['num_hidden_layers'],
num_image_tokens = data['num_image_tokens'],
num_key_value_heads = data['num_key_value_heads'],
vocab_size = data['vocab_size'],
training = data['training'])
class RMSNorm(nn.Module):
def __init__(self, dim: int, norm_eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.zeros(dim))
self.norm_eps = norm_eps
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.norm_eps)
def forward(self, x: torch.Tensor):
output = self._norm(x.float())
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def precompute_freqs(head_dim: int, max_seq_len: int, theta: int = 10000):
thetas = 1 / (theta ** (torch.arange(0, head_dim, 2, dtype=torch.int64).float() / head_dim))
m = torch.arange(max_seq_len, dtype=torch.long)
# (max_seq_len, head_dim // 2)
freqs = torch.outer(m, thetas)
# (max_seq_len, head_dim // 2) -> (max_seq_len, head_dim)
freqs = torch.cat((freqs, freqs), dim=-1)
return freqs
def roate_half(x: torch.Tensor):
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_embed(x: torch.Tensor,
freqs: torch.Tensor):
# x: (n, n_heads, seq_len, head_dim)
# freqs: (n, seq_len, head_dim)
device_type = x.device.type
device_type = device_type if device_type != 'mps' else 'cpu'
with torch.autocast(device_type=device_type, enabled=False):
cos = freqs.cos()
sin = freqs.sin()
while len(cos.shape) < len(x.shape):
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
cos = cos.to(x.dtype)
sin = sin.to(x.dtype)
x = (x * cos) + (roate_half(x) * sin)
return x
class KVCache:
def __init__(self):
self.cache_k: List[torch.Tensor] = []
self.cache_v: List[torch.Tensor] = []
def num_items(self):
if len(self.cache_k) == 0:
return 0
else:
# (n, num_heads, seq_len, head_dim)
return self.cache_k[0].shape[-2]
def update(self, xk, xv, layer_idx):
if layer_idx < len(self.cache_k):
self.cache_k[layer_idx] = torch.cat((self.cache_k[layer_idx], xk), dim=-2)
self.cache_v[layer_idx] = torch.cat((self.cache_v[layer_idx], xv), dim=-2)
else:
self.cache_k.append(xk)
self.cache_v.append(xv)
return self.cache_k[layer_idx], self.cache_v[layer_idx]
class GemmaTransformerAttention(nn.Module):
def __init__(self, cfg: GemmaConfig, layer_idx: int):
super().__init__()
self.cfg = cfg
self.layer_idx = layer_idx
self.vocab_size = cfg.vocab_size
self.hidden_size = cfg.hidden_size
self.num_attention_heads = cfg.num_attention_heads
self.num_key_value_heads = cfg.num_key_value_heads
self.max_seq_len = cfg.max_seq_len
assert self.hidden_size % self.num_attention_heads == 0
self.n_rep =self.num_attention_heads // self.num_key_value_heads
self.head_dim = self.hidden_size // self.num_attention_heads
self.q_proj = nn.Linear(self.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.attn_dropout = cfg.attention_dropout
self.training = cfg.training
self.register_buffer('freqs',
precompute_freqs(self.head_dim, cfg.max_seq_len),
persistent=False)
def forward(self, x: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None):
batch_size, seq_len, embed_dim = x.shape
xq = self.q_proj(x)
xk = self.k_proj(x)
xv = self.v_proj(x)
# (n, seq_len, hidden_size) -> (n, seq_len, num_heads, head_dim) -> (n, num_heads, seq_len, head_dim)
xq = xq.view(batch_size, seq_len, self.num_attention_heads, self.head_dim).transpose(1, 2)
# (n, seq_len, hidden_size) -> (n, seq_len, num_kv_heads, head_dim) -> (n, num_kv_heads, seq_len, head_dim)
xk = xk.view(batch_size, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
xv = xv.view(batch_size, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
xq = apply_rotary_embed(xq, self.freqs[position_ids, :])
xk = apply_rotary_embed(xk, self.freqs[position_ids, :])
if kv_cache is not None:
keys, values = kv_cache.update(xk, xv, self.layer_idx)
else:
keys, values = xk, xv
# (n, num_kv_heads, seq_len, head_dim) -> (n, num_kv_heads * n_rep, seq_len, head_dim) -> (n, num_heads, seq_len, head_dim)
keys = keys[:, :, None, :, :].expand(-1, -1, self.n_rep, -1, -1).view(batch_size, -1, keys.shape[-2], self.head_dim)
values = values[:, :, None, :, :].expand(-1, -1, self.n_rep, -1, -1).view(batch_size, -1, keys.shape[-2], self.head_dim)
assert attention_mask is not None
# (n, num_heads, seq_len, head_dim) @ (n, num_heads, head_dim, seq_len) -> (n, num_heads, seq_len, seq_len)
attn_weights = torch.softmax(xq @ keys.transpose(2, 3) / math.sqrt(self.head_dim) + attention_mask, dim=-1)
# dropout when training
attn_weights = F.dropout(attn_weights, p=self.attn_dropout, training=self.training)
# (n, num_heads, seq_len, seq_len) @ (n, num_heads, seq_len, head_dim) -> (n, num_heads, seq_len, head_dim)
attn_output = attn_weights @ values
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(*x.shape)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class GemmaTransformerMLP(nn.Module):
def __init__(self, cfg: GemmaConfig):
super().__init__()
self.cfg = cfg
self.down_proj = nn.Linear(cfg.intermediate_size, cfg.hidden_size, bias=False)
self.gate_proj = nn.Linear(cfg.hidden_size, cfg.intermediate_size, bias=False)
self.up_proj = nn.Linear(cfg.hidden_size, cfg.intermediate_size, bias=False)
def forward(self, x: torch.Tensor):
return self.down_proj(F.gelu(self.gate_proj(x), approximate="tanh") * self.up_proj(x))
class GemmaTransformerDecoder(nn.Module):
def __init__(self, cfg: GemmaConfig, layer_idx: int) -> None:
super().__init__()
self.cfg = cfg
self.input_layernorm = RMSNorm(cfg.hidden_size, cfg.norm_eps)
self.self_attn = GemmaTransformerAttention(cfg, layer_idx)
self.mlp = GemmaTransformerMLP(cfg)
self.post_attention_layernorm = RMSNorm(cfg.hidden_size, cfg.norm_eps)
self.gradient_checking = False
def forward(self, x: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
kv_cache: Optional[KVCache] = None):
residual = x
x = self.input_layernorm(x)
if self.gradient_checking:
x = checkpoint.checkpoint(self.self_attn, x, position_ids, attention_mask, kv_cache)
else:
x = self.self_attn(x,
position_ids,
attention_mask,
kv_cache)[0]
x += residual
residual = x
x = self.post_attention_layernorm(x)
x = residual + self.mlp(x)
return x
class GemmaModel(nn.Module):
def __init__(self, cfg: GemmaConfig) -> None:
super().__init__()
self.cfg = cfg
self.embed_tokens = nn.Embedding(cfg.vocab_size, cfg.hidden_size)
self.layers = nn.ModuleList(
[GemmaTransformerDecoder(cfg, layer_idx) for layer_idx in range(cfg.num_hidden_layers)]
)
self.norm = RMSNorm(cfg.hidden_size, cfg.norm_eps)
def forward(self, x: torch.Tensor,
position_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor],
kv_cache: Optional[KVCache]) -> torch.Tensor:
output = x * torch.tensor(self.cfg.hidden_size ** 0.5, dtype=x.dtype)
for layer in self.layers:
output = layer(output,
position_ids,
attention_mask,
kv_cache)
output = self.norm(output)
return output
class Gemma(nn.Module):
def __init__(self, cfg: GemmaConfig) -> None:
super().__init__()
self.cfg = cfg
self.model = GemmaModel(cfg)
self.vocab_size = cfg.vocab_size
self.lm_head = nn.Linear(cfg.hidden_size, cfg.vocab_size, bias=False)
def gradient_checkpointing_enabled(self, enabled=False):
for name, module in self.model.named_modules():
if isinstance(module, GemmaTransformerDecoder):
module.gradient_checking = enabled
def tie_weights(self):
self.lm_head.weight = self.model.embed_tokens.weight
def forward(self,
input_embeds: torch.Tensor,
position_ids: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor],
kv_cache: Optional[KVCache]):
output = self.model(input_embeds,
position_ids,
attention_mask,
kv_cache)
return output, kv_cache