Spaces:
Sleeping
Sleeping
Update eda.py
Browse files
eda.py
CHANGED
@@ -4,4 +4,173 @@ import matplotlib.pyplot as plt
|
|
4 |
import seaborn as sns
|
5 |
|
6 |
def app():
|
7 |
-
st.title('Exploratory Data Analysis')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import seaborn as sns
|
5 |
|
6 |
def app():
|
7 |
+
st.title('Exploratory Data Analysis')
|
8 |
+
|
9 |
+
# Load Data
|
10 |
+
df = pd.read_csv('../Transactions Data.csv')
|
11 |
+
|
12 |
+
# Data Summary
|
13 |
+
st.header('Data Summary')
|
14 |
+
st.write(df.describe().T)
|
15 |
+
|
16 |
+
st.divider()
|
17 |
+
|
18 |
+
# Univariate Exploration
|
19 |
+
st.header('Univariate Analysis')
|
20 |
+
|
21 |
+
# 1
|
22 |
+
st.subheader('Distribution of Transactions Types')
|
23 |
+
# Plotting
|
24 |
+
fig, ax = plt.subplots()
|
25 |
+
sns.histplot(df['type'], bins=20, ax=ax)
|
26 |
+
plt.xlabel('Transaction Types')
|
27 |
+
plt.ylabel('Frequency')
|
28 |
+
plt.title('Distribution of Transaction Types')
|
29 |
+
st.pyplot(fig)
|
30 |
+
st.write('bla bla bla')
|
31 |
+
st.write('')
|
32 |
+
|
33 |
+
# 2
|
34 |
+
st.subheader('Distribution of Balance Amount')
|
35 |
+
# Plotting
|
36 |
+
fig, ax = plt.subplots()
|
37 |
+
sns.histplot(df['amount'], bins=20, ax=ax)
|
38 |
+
plt.xlabel('Amount')
|
39 |
+
plt.ylabel('Frequency')
|
40 |
+
plt.title('Distribution of Balance Amount')
|
41 |
+
st.pyplot(fig)
|
42 |
+
st.write('bla bla bla')
|
43 |
+
st.write('')
|
44 |
+
|
45 |
+
# 3
|
46 |
+
st.subheader('Distribution of Old Balance Origin')
|
47 |
+
# Plotting
|
48 |
+
fig, ax = plt.subplots()
|
49 |
+
sns.histplot(df['oldbalanceOrg'], bins=20, ax=ax)
|
50 |
+
plt.xlabel('Old Balance Origin')
|
51 |
+
plt.ylabel('Frequency')
|
52 |
+
plt.title('Distribution of Old Balance Origin')
|
53 |
+
st.pyplot(fig)
|
54 |
+
st.write('bla bla bla')
|
55 |
+
st.write('')
|
56 |
+
|
57 |
+
# 4
|
58 |
+
st.subheader('Distribution of New Balance Origin')
|
59 |
+
# Plotting
|
60 |
+
fig, ax = plt.subplots()
|
61 |
+
sns.histplot(df['newbalanceOrig'], bins=20, ax=ax)
|
62 |
+
plt.xlabel('New Balance Origin')
|
63 |
+
plt.ylabel('Frequency')
|
64 |
+
plt.title('Distribution of New Balance Origin')
|
65 |
+
st.pyplot(fig)
|
66 |
+
st.write('bla bla bla')
|
67 |
+
st.write('')
|
68 |
+
|
69 |
+
# 5
|
70 |
+
st.subheader('Distribution of Old Balance Destination')
|
71 |
+
# Plotting
|
72 |
+
fig, ax = plt.subplots()
|
73 |
+
sns.histplot(df['oldbalanceDest'], bins=20, ax=ax)
|
74 |
+
plt.xlabel('Old Balance Origin')
|
75 |
+
plt.ylabel('Frequency')
|
76 |
+
plt.title('Distribution of Old Balance Destination')
|
77 |
+
st.pyplot(fig)
|
78 |
+
st.write('bla bla bla')
|
79 |
+
st.write('')
|
80 |
+
|
81 |
+
|
82 |
+
# 5
|
83 |
+
st.subheader('Distribution of New Balance Destination')
|
84 |
+
# Plotting
|
85 |
+
fig, ax = plt.subplots()
|
86 |
+
sns.histplot(df['newbalanceDest'], bins=20, ax=ax)
|
87 |
+
plt.xlabel('New Balance Origin')
|
88 |
+
plt.ylabel('Frequency')
|
89 |
+
plt.title('Distribution of New Balance Destination')
|
90 |
+
st.pyplot(fig)
|
91 |
+
st.write('bla bla bla')
|
92 |
+
st.write('')
|
93 |
+
|
94 |
+
# 6
|
95 |
+
st.subheader('Distribution of Flagged Fraud')
|
96 |
+
# Plotting
|
97 |
+
fig, ax = plt.subplots()
|
98 |
+
sns.histplot(df['isFlaggedFraud'], bins=20, ax=ax)
|
99 |
+
plt.xlabel('Is Flagged Fraud')
|
100 |
+
plt.ylabel('Frequency')
|
101 |
+
plt.title('Distribution of Flagged Fraud')
|
102 |
+
st.pyplot(fig)
|
103 |
+
st.write('bla bla bla')
|
104 |
+
st.write('')
|
105 |
+
|
106 |
+
# 7
|
107 |
+
st.subheader('Distribution of Fraud')
|
108 |
+
# Plotting
|
109 |
+
fig, ax = plt.subplots()
|
110 |
+
sns.histplot(df['isFraud'], bins=20, ax=ax)
|
111 |
+
plt.xlabel('Is Fraud')
|
112 |
+
plt.ylabel('Frequency')
|
113 |
+
plt.title('Distribution of Fraud')
|
114 |
+
st.pyplot(fig)
|
115 |
+
st.write('bla bla bla')
|
116 |
+
st.write('')
|
117 |
+
|
118 |
+
st.divider()
|
119 |
+
|
120 |
+
# Bivariate analysis
|
121 |
+
st.header('Bivariate Analysis')
|
122 |
+
|
123 |
+
# 1
|
124 |
+
st.subheader('Distribution of Amout Balance per Transaction Types')
|
125 |
+
fig, ax = plt.subplots()
|
126 |
+
sns.boxplot(x=df['amount'], y=df['type'], ax=ax)
|
127 |
+
plt.xlabel('Amount')
|
128 |
+
plt.ylabel('Transaction Types')
|
129 |
+
plt.title('Transaction Types vs Amount Balance')
|
130 |
+
st.pyplot(fig)
|
131 |
+
st.write('bla bla bla')
|
132 |
+
st.write('')
|
133 |
+
|
134 |
+
# 2
|
135 |
+
st.subheader('Distribution of Old Balance Origin per Transaction Types')
|
136 |
+
fig, ax = plt.subplots()
|
137 |
+
sns.boxplot(x=df['oldbalanceOrg'], y=df['type'], ax=ax)
|
138 |
+
plt.xlabel('Old Balance Origin')
|
139 |
+
plt.ylabel('Transaction Types')
|
140 |
+
plt.title('Transaction Types vs Old Balance Origin')
|
141 |
+
st.pyplot(fig)
|
142 |
+
st.write('bla bla bla')
|
143 |
+
st.write('')
|
144 |
+
|
145 |
+
# 3
|
146 |
+
st.subheader('Distribution of New Balance Origin per Transaction Types')
|
147 |
+
fig, ax = plt.subplots()
|
148 |
+
sns.boxplot(x=df['newbalanceOrig'], y=df['type'], ax=ax)
|
149 |
+
plt.xlabel('New Balance Origin')
|
150 |
+
plt.ylabel('Transaction Types')
|
151 |
+
plt.title('Transaction Types vs Old Balance Origin')
|
152 |
+
st.pyplot(fig)
|
153 |
+
st.write('bla bla bla')
|
154 |
+
st.write('')
|
155 |
+
|
156 |
+
# 4
|
157 |
+
st.subheader('Distribution of Old Balance Destination per Transaction Types')
|
158 |
+
fig, ax = plt.subplots()
|
159 |
+
sns.boxplot(x=df['oldbalanceDest'], y=df['type'], ax=ax)
|
160 |
+
plt.xlabel('Old Balance Destination')
|
161 |
+
plt.ylabel('Transaction Types')
|
162 |
+
plt.title('Transaction Types vs Old Balance Destination')
|
163 |
+
st.pyplot(fig)
|
164 |
+
st.write('bla bla bla')
|
165 |
+
st.write('')
|
166 |
+
|
167 |
+
# 5
|
168 |
+
st.subheader('Distribution of New Balance Destination per Transaction Types')
|
169 |
+
fig, ax = plt.subplots()
|
170 |
+
sns.boxplot(x=df['newbalanceDest'], y=df['type'], ax=ax)
|
171 |
+
plt.xlabel('New Balance Destination')
|
172 |
+
plt.ylabel('Transaction Types')
|
173 |
+
plt.title('Transaction Types vs New Balance Destination')
|
174 |
+
st.pyplot(fig)
|
175 |
+
st.write('bla bla bla')
|
176 |
+
st.write('')
|