Spaces:
Running
Running
add iSPICE files.
Browse files- Dockerfile +21 -0
- app.py +47 -0
- ispice.py +190 -0
- requirements.txt +3 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
|
4 |
+
RUN apt-get update
|
5 |
+
RUN mkdir -p /etc/apt/keyrings
|
6 |
+
RUN wget -O - https://packages.adoptium.net/artifactory/api/gpg/key/public | tee /etc/apt/keyrings/adoptium.asc
|
7 |
+
RUN echo "deb [signed-by=/etc/apt/keyrings/adoptium.asc] https://packages.adoptium.net/artifactory/deb $(awk -F= '/^VERSION_CODENAME/{print$2}' /etc/os-release) main" | tee /etc/apt/sources.list.d/adoptium.list
|
8 |
+
RUN apt-get update
|
9 |
+
RUN apt-get install -y temurin-8-jdk
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
WORKDIR /code
|
14 |
+
|
15 |
+
COPY ./requirements.txt /code/requirements.txt
|
16 |
+
|
17 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
18 |
+
|
19 |
+
COPY . .
|
20 |
+
|
21 |
+
CMD ["streamlit", "run", "app.py","--server.address", "0.0.0.0", "--server.port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ispice import Spice
|
3 |
+
|
4 |
+
# Function to compute score
|
5 |
+
def preprocess_captions(generated_captions, reference_captions):
|
6 |
+
hypotheses = {'image'+str(i): [generated_captions[i]] for i in range(len(generated_captions))}
|
7 |
+
references = {'image'+str(i): [reference_captions[i]] for i in range(len(reference_captions))}
|
8 |
+
return hypotheses, references
|
9 |
+
|
10 |
+
# Streamlit app
|
11 |
+
def main():
|
12 |
+
st.title("iSPICE Metric Evaluation")
|
13 |
+
|
14 |
+
# Dropdown for comparison option
|
15 |
+
mode = st.selectbox("Mode:", ["ID", "Name"])
|
16 |
+
|
17 |
+
spice_scorer = Spice(mode=mode)
|
18 |
+
|
19 |
+
# Description
|
20 |
+
st.write("You can either input single caption or multiple captions separated by new line.")
|
21 |
+
# Input text boxes
|
22 |
+
generated_caption = st.text_area("Generated Caption:", "")
|
23 |
+
reference_caption = st.text_area("Reference Caption:", "")
|
24 |
+
|
25 |
+
# Compute score button
|
26 |
+
if st.button("Compute Score"):
|
27 |
+
generated_captions = generated_caption.split("\n")
|
28 |
+
reference_captions = reference_caption.split("\n")
|
29 |
+
|
30 |
+
print(generated_captions, len(generated_captions))
|
31 |
+
print(reference_captions, len(reference_captions))
|
32 |
+
|
33 |
+
|
34 |
+
hypotheses, references = preprocess_captions(generated_captions, reference_captions)
|
35 |
+
|
36 |
+
if generated_caption.strip() == "" or reference_caption.strip() == "":
|
37 |
+
st.error("Please provide both generated and reference captions.")
|
38 |
+
else:
|
39 |
+
average_spice_score, spice_scores, average_ispice_score, ispice_scores = spice_scorer.compute_score(references, hypotheses)
|
40 |
+
st.subheader("Scores :")
|
41 |
+
st.write("Average SPICE Score:", average_spice_score)
|
42 |
+
st.write("Average iSPICE Score:", average_ispice_score)
|
43 |
+
st.write("SPICE Scores:", spice_scores)
|
44 |
+
st.write("iSPICE Scores:", ispice_scores)
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
main()
|
ispice.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import division
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import subprocess
|
5 |
+
import threading
|
6 |
+
import json
|
7 |
+
import numpy as np
|
8 |
+
import ast
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
# Assumes spice.jar is in the same directory as spice.py. Change as needed.
|
12 |
+
SPICE_JAR = 'spice-1.0.jar'
|
13 |
+
TEMP_DIR = 'tmp'
|
14 |
+
CACHE_DIR = 'cache'
|
15 |
+
|
16 |
+
class Spice:
|
17 |
+
"""
|
18 |
+
Main Class to compute the SPICE metric
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, mode="ID"):
|
22 |
+
self.mode = mode
|
23 |
+
|
24 |
+
def float_convert(self, obj):
|
25 |
+
try:
|
26 |
+
return float(obj)
|
27 |
+
except:
|
28 |
+
return np.nan
|
29 |
+
|
30 |
+
def fetch_tuples(self, tuples):
|
31 |
+
result_tuples = []
|
32 |
+
for item in tuples:
|
33 |
+
result_tuples.append(item['tuple'])
|
34 |
+
return result_tuples
|
35 |
+
|
36 |
+
def find_common(self, tuple_A, tuple_B):
|
37 |
+
common = 0
|
38 |
+
for item in tuple_A:
|
39 |
+
if item in tuple_B:
|
40 |
+
common += 1
|
41 |
+
|
42 |
+
return common
|
43 |
+
|
44 |
+
def get_identity_tuples(self, data):
|
45 |
+
person_ids = ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", "p10", "p11"]
|
46 |
+
filtered_tuples = [item for item in data if any(person_id in item for person_id in person_ids)]
|
47 |
+
action_tuples = [tup for tup in filtered_tuples if len(tup) > 1]
|
48 |
+
id_tuples = list(set([tuple(tup) for tup in filtered_tuples if len(tup) == 1]))
|
49 |
+
id_tuples = [list(tup) for tup in id_tuples]
|
50 |
+
return action_tuples, id_tuples
|
51 |
+
|
52 |
+
def get_named_tuples(self, data):
|
53 |
+
names_list = ["ray", "sam", "casey", "riley", "morgan", "alex", "quinn", "cameron", "avery", "charlie", "jamie", "mike"]
|
54 |
+
filtered_tuples = [item for item in data if any(name in item for name in names_list)]
|
55 |
+
action_tuples = [tup for tup in filtered_tuples if len(tup) > 1]
|
56 |
+
id_tuples = list(set([tuple(tup) for tup in filtered_tuples if len(tup) == 1]))
|
57 |
+
id_tuples = [list(tup) for tup in id_tuples]
|
58 |
+
return action_tuples, id_tuples
|
59 |
+
|
60 |
+
def calculate_metrics(self, pred_tuples, ref_tuples):
|
61 |
+
print(f"pred_tuples : {pred_tuples}")
|
62 |
+
print(f"ref_tuples : {ref_tuples}")
|
63 |
+
common = self.find_common(pred_tuples, ref_tuples)
|
64 |
+
print(f"Common : {common}")
|
65 |
+
total_pred = len(pred_tuples)
|
66 |
+
print(f"total_pred : {total_pred}")
|
67 |
+
total_ref = len(ref_tuples)
|
68 |
+
print(f"total_ref : {total_ref}")
|
69 |
+
if total_pred == 0 or total_ref == 0:
|
70 |
+
return 0
|
71 |
+
#print(f"Common : {common}, Total Pred : {total_pred}, Total Ref: {total_ref}")
|
72 |
+
precision = common / total_pred
|
73 |
+
recall = common / total_ref
|
74 |
+
|
75 |
+
print(f"Precision : {precision}, Recall: {recall}")
|
76 |
+
|
77 |
+
if precision + recall == 0:
|
78 |
+
return 0
|
79 |
+
|
80 |
+
f1_score = (2 * precision * recall)/(precision + recall)
|
81 |
+
#print(f"precision : {precision}")
|
82 |
+
#print(f"recall : {recall}")
|
83 |
+
#print(f"f-score: {f1_score}")
|
84 |
+
|
85 |
+
return f1_score
|
86 |
+
|
87 |
+
# def get_log_penalty(gt,pred):
|
88 |
+
# person_ids = ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", "p10", "p11"]
|
89 |
+
# gt_set = set()
|
90 |
+
# pred_set = set()
|
91 |
+
|
92 |
+
# for word in pred.split():
|
93 |
+
# if word.lower() in person_ids:
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
def compute_score(self, gts, res):
|
101 |
+
assert(sorted(gts.keys()) == sorted(res.keys()))
|
102 |
+
imgIds = sorted(gts.keys())
|
103 |
+
|
104 |
+
# Prepare temp input file for the SPICE scorer
|
105 |
+
input_data = []
|
106 |
+
for id in imgIds:
|
107 |
+
hypo = res[id]
|
108 |
+
ref = gts[id]
|
109 |
+
|
110 |
+
# Sanity check.
|
111 |
+
assert(type(hypo) is list)
|
112 |
+
assert(len(hypo) == 1)
|
113 |
+
assert(type(ref) is list)
|
114 |
+
assert(len(ref) >= 1)
|
115 |
+
|
116 |
+
input_data.append({
|
117 |
+
"image_id" : id,
|
118 |
+
"test" : hypo[0],
|
119 |
+
"refs" : ref
|
120 |
+
})
|
121 |
+
|
122 |
+
cwd = os.path.dirname(os.path.abspath(__file__))
|
123 |
+
temp_dir=os.path.join(cwd, TEMP_DIR)
|
124 |
+
if not os.path.exists(temp_dir):
|
125 |
+
os.makedirs(temp_dir)
|
126 |
+
in_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir,
|
127 |
+
mode='w+')
|
128 |
+
json.dump(input_data, in_file, indent=2)
|
129 |
+
in_file.close()
|
130 |
+
|
131 |
+
# Start job
|
132 |
+
out_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
|
133 |
+
out_file.close()
|
134 |
+
cache_dir=os.path.join(cwd, CACHE_DIR)
|
135 |
+
if not os.path.exists(cache_dir):
|
136 |
+
os.makedirs(cache_dir)
|
137 |
+
spice_cmd = ['java', '-jar', '-Xmx8G', SPICE_JAR, in_file.name,
|
138 |
+
'-cache', cache_dir,
|
139 |
+
'-out', out_file.name,
|
140 |
+
'-detailed',
|
141 |
+
'-silent'
|
142 |
+
]
|
143 |
+
subprocess.check_call(spice_cmd,
|
144 |
+
cwd=os.path.dirname(os.path.abspath(__file__)))
|
145 |
+
|
146 |
+
# Read and process results
|
147 |
+
with open(out_file.name) as data_file:
|
148 |
+
results = json.load(data_file)
|
149 |
+
os.remove(in_file.name)
|
150 |
+
os.remove(out_file.name)
|
151 |
+
|
152 |
+
|
153 |
+
imgId_to_scores = {}
|
154 |
+
spice_scores = []
|
155 |
+
ispice_scores = []
|
156 |
+
for item in results:
|
157 |
+
imgId_to_scores[item['image_id']] = item['scores']
|
158 |
+
spice_scores.append(self.float_convert(item['scores']['All']['f']))
|
159 |
+
pred_tuples = self.fetch_tuples(item['test_tuples'])
|
160 |
+
ref_tuples = self.fetch_tuples(item['ref_tuples'])
|
161 |
+
if(self.mode == "ID"):
|
162 |
+
ia_pred_tuples, id_pred_tuples = self.get_identity_tuples(pred_tuples)
|
163 |
+
ia_ref_tuples, id_ref_tuples = self.get_identity_tuples(ref_tuples)
|
164 |
+
elif(self.mode == "Name"):
|
165 |
+
ia_pred_tuples, id_pred_tuples = self.get_named_tuples(pred_tuples)
|
166 |
+
ia_ref_tuples, id_ref_tuples = self.get_named_tuples(ref_tuples)
|
167 |
+
|
168 |
+
|
169 |
+
if(len(ia_pred_tuples) != 0):
|
170 |
+
i_spice_score = self.calculate_metrics(ia_pred_tuples, ia_ref_tuples)
|
171 |
+
i_spice_score *= self.calculate_metrics(id_pred_tuples, id_ref_tuples)
|
172 |
+
ispice_scores.append(i_spice_score)
|
173 |
+
|
174 |
+
average_spice_score = np.mean(np.array(spice_scores))
|
175 |
+
average_ispice_score = np.mean(np.array(ispice_scores))
|
176 |
+
|
177 |
+
return average_spice_score, spice_scores, average_ispice_score, ispice_scores
|
178 |
+
|
179 |
+
def method(self):
|
180 |
+
return "iSPICE"
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
#test = Spice()
|
185 |
+
#test_query = {"image1":["p1 faces him. p1 shrugs. p2 shrugs. p1 gives a faint nod."],
|
186 |
+
# "image2":["two fedex trucks parked on the side of the street."]}
|
187 |
+
#test_ref = {"image1":["p1 faces him. p1 tosses down her phone. p2 considers the idea. p1 frowns."],
|
188 |
+
# "image2":["two fedex trucks parked on a side of a street with tall buidings behind them."]}
|
189 |
+
|
190 |
+
#print(test.compute_score(test_ref, test_query))
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
requests==2.27.*
|
3 |
+
streamlit
|