Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
import csv
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
from huggingface_hub import Repository
|
8 |
+
|
9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
10 |
+
|
11 |
+
SUBJECTS = ["Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
|
12 |
+
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
13 |
+
|
14 |
+
MODEL_INFO = [
|
15 |
+
"Model (CoT)",
|
16 |
+
"Overall",
|
17 |
+
"Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
|
18 |
+
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
19 |
+
|
20 |
+
DATA_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number',
|
21 |
+
'number', 'number', 'number', 'number', 'number', 'number', 'number',
|
22 |
+
'number', 'number']
|
23 |
+
|
24 |
+
SUBMISSION_NAME = "mmlu_pro_leaderboard_submission"
|
25 |
+
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME)
|
26 |
+
CSV_DIR = "./mmlu_pro_leaderboard_submission/results.csv"
|
27 |
+
|
28 |
+
COLUMN_NAMES = MODEL_INFO
|
29 |
+
|
30 |
+
LEADERBORAD_INTRODUCTION = """# MMLU-Pro Leaderboard
|
31 |
+
MMLU-Pro dataset, a more robust and challenging massive multi-task understanding dataset tailored to more \
|
32 |
+
rigorously benchmark large language models' capabilities. This dataset contains 12K \
|
33 |
+
complex questions across various disciplines.
|
34 |
+
"""
|
35 |
+
|
36 |
+
TABLE_INTRODUCTION = """
|
37 |
+
"""
|
38 |
+
|
39 |
+
LEADERBORAD_INFO = """
|
40 |
+
We list the information of the used datasets as follows:<br>
|
41 |
+
|
42 |
+
"""
|
43 |
+
|
44 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
45 |
+
CITATION_BUTTON_TEXT = r""""""
|
46 |
+
|
47 |
+
SUBMIT_INTRODUCTION = """# Submit on Science Leaderboard Introduction
|
48 |
+
|
49 |
+
## ⚠ Please note that you need to submit the json file with following format:
|
50 |
+
|
51 |
+
```json
|
52 |
+
{
|
53 |
+
"Model": "[NAME]",
|
54 |
+
"Repo": "https://huggingface.co/[MODEL_NAME],"
|
55 |
+
"Overall": 56.7,
|
56 |
+
"Biology": 23.4,
|
57 |
+
"Business": 45.6,
|
58 |
+
...,
|
59 |
+
"Other: 56.7"
|
60 |
+
}
|
61 |
+
```
|
62 |
+
After submitting, you can click the "Refresh" button to see the updated leaderboard(it may takes few seconds).
|
63 |
+
|
64 |
+
"""
|
65 |
+
|
66 |
+
|
67 |
+
def get_df():
|
68 |
+
repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN)
|
69 |
+
repo.git_pull()
|
70 |
+
df = pd.read_csv(CSV_DIR)
|
71 |
+
df = df.sort_values(by=['Overall'], ascending=False)
|
72 |
+
return df[COLUMN_NAMES]
|
73 |
+
|
74 |
+
|
75 |
+
def add_new_eval(
|
76 |
+
input_file,
|
77 |
+
):
|
78 |
+
if input_file is None:
|
79 |
+
return "Error! Empty file!"
|
80 |
+
|
81 |
+
upload_data = json.loads(input_file)
|
82 |
+
data_row = [f'[{upload_data["Model"]}]({upload_data["Repo"]})', upload_data['Overall']]
|
83 |
+
for subject in SUBJECTS:
|
84 |
+
data_row += [upload_data[subject]]
|
85 |
+
|
86 |
+
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL,
|
87 |
+
use_auth_token=HF_TOKEN, repo_type="dataset")
|
88 |
+
submission_repo.git_pull()
|
89 |
+
|
90 |
+
already_submitted = []
|
91 |
+
with open(CSV_DIR, mode='r') as file:
|
92 |
+
reader = csv.reader(file, delimiter=',')
|
93 |
+
for row in reader:
|
94 |
+
already_submitted.append(row[0])
|
95 |
+
|
96 |
+
if data_row[0] not in already_submitted:
|
97 |
+
with open(CSV_DIR, mode='a', newline='') as file:
|
98 |
+
writer = csv.writer(file)
|
99 |
+
writer.writerow(data_row)
|
100 |
+
|
101 |
+
submission_repo.push_to_hub()
|
102 |
+
print('Submission Successful')
|
103 |
+
else:
|
104 |
+
print('The entry already exists')
|
105 |
+
|
106 |
+
|
107 |
+
def refresh_data():
|
108 |
+
return get_df()
|
109 |
+
|
110 |
+
|
111 |
+
|